{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# BAD DAY 2: Generalized linear models " ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#for more examples see: http://plantecology.syr.edu/fridley/bio793/glm.html\n", "\n", "setwd(getwd())\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Generalized linear models (GLMs) extend the linear modeling capability of R to scenarios that involve non-normal error distributions or heteroscedasticity. \n", "\n", "All other classic assumptions (particularly independent observations) still apply. The idea here is that linear functions of the predictor variables are obtained by a link function. The data are then fit in this transformed scale (using an iterative routine based on least squares), but the expected variance is calculated on the original scale of the predictor variables. \n", "\n", "Simple examples of link functions are $log(y)$ [which linearizes $exp(x)$], $sqrt(y) [x^2]$, and $1/y$. More particularly, GLMs work for the so-called 'exponential' family of error models: Poisson, binomial, Gamma, and normal." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Count (or count-like) response variables" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\n", "
plotIDdateplotsizespcodespeciescoverutmeutmnelevtcistreamdistdisturbbeers
ATBN-01-0403 08-28-2001 1000 ABIEFRA Abies fraseri1 275736 3942439 1660 5.701460 490.9 CORPLOG 0.22442864
ATBN-01-0532 07-24-2002 1000 ABIEFRA Abies fraseri8 302847 3942772 1712 3.823586 454.0 VIRGIN 0.83408785
ATBN-01-0533 07-24-2002 1000 ABIEFRA Abies fraseri3 303037 3943039 1722 3.893762 453.4 LT-SEL 1.33325863
ATBN-01-0536 07-25-2002 1000 ABIEFRA Abies fraseri3 273927 3935488 1754 3.145527 492.5 SETTLE 1.47124839
ATBP-01-0001 05-11-1999 10000 ABIEFRA Abies fraseri8 273857 3937870 1945 5.682065 492.4 VIRGIN 1.64377141
ATBP-01-0005 08-25-1999 10000 ABIEFRA Abies fraseri4 273876 3935462 1751 5.417182 545.9 SETTLE 0.00032873
\n" ], "text/latex": [ "\\begin{tabular}{r|lllllllllllll}\n", " plotID & date & plotsize & spcode & species & cover & utme & utmn & elev & tci & streamdist & disturb & beers\\\\\n", "\\hline\n", "\t ATBN-01-0403 & 08-28-2001 & 1000 & ABIEFRA & Abies fraseri & 1 & 275736 & 3942439 & 1660 & 5.701460 & 490.9 & CORPLOG & 0.22442864 \\\\\n", "\t ATBN-01-0532 & 07-24-2002 & 1000 & ABIEFRA & Abies fraseri & 8 & 302847 & 3942772 & 1712 & 3.823586 & 454.0 & VIRGIN & 0.83408785 \\\\\n", "\t ATBN-01-0533 & 07-24-2002 & 1000 & ABIEFRA & Abies fraseri & 3 & 303037 & 3943039 & 1722 & 3.893762 & 453.4 & LT-SEL & 1.33325863 \\\\\n", "\t ATBN-01-0536 & 07-25-2002 & 1000 & ABIEFRA & Abies fraseri & 3 & 273927 & 3935488 & 1754 & 3.145527 & 492.5 & SETTLE & 1.47124839 \\\\\n", "\t ATBP-01-0001 & 05-11-1999 & 10000 & ABIEFRA & Abies fraseri & 8 & 273857 & 3937870 & 1945 & 5.682065 & 492.4 & VIRGIN & 1.64377141 \\\\\n", "\t ATBP-01-0005 & 08-25-1999 & 10000 & ABIEFRA & Abies fraseri & 4 & 273876 & 3935462 & 1751 & 5.417182 & 545.9 & SETTLE & 0.00032873 \\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "plotID | date | plotsize | spcode | species | cover | utme | utmn | elev | tci | streamdist | disturb | beers | \n", "|---|---|---|---|---|---|\n", "| ATBN-01-0403 | 08-28-2001 | 1000 | ABIEFRA | Abies fraseri | 1 | 275736 | 3942439 | 1660 | 5.701460 | 490.9 | CORPLOG | 0.22442864 | \n", "| ATBN-01-0532 | 07-24-2002 | 1000 | ABIEFRA | Abies fraseri | 8 | 302847 | 3942772 | 1712 | 3.823586 | 454.0 | VIRGIN | 0.83408785 | \n", "| ATBN-01-0533 | 07-24-2002 | 1000 | ABIEFRA | Abies fraseri | 3 | 303037 | 3943039 | 1722 | 3.893762 | 453.4 | LT-SEL | 1.33325863 | \n", "| ATBN-01-0536 | 07-25-2002 | 1000 | ABIEFRA | Abies fraseri | 3 | 273927 | 3935488 | 1754 | 3.145527 | 492.5 | SETTLE | 1.47124839 | \n", "| ATBP-01-0001 | 05-11-1999 | 10000 | ABIEFRA | Abies fraseri | 8 | 273857 | 3937870 | 1945 | 5.682065 | 492.4 | VIRGIN | 1.64377141 | \n", "| ATBP-01-0005 | 08-25-1999 | 10000 | ABIEFRA | Abies fraseri | 4 | 273876 | 3935462 | 1751 | 5.417182 | 545.9 | SETTLE | 0.00032873 | \n", "\n", "\n" ], "text/plain": [ " plotID date plotsize spcode species cover utme utmn \n", "1 ATBN-01-0403 08-28-2001 1000 ABIEFRA Abies fraseri 1 275736 3942439\n", "2 ATBN-01-0532 07-24-2002 1000 ABIEFRA Abies fraseri 8 302847 3942772\n", "3 ATBN-01-0533 07-24-2002 1000 ABIEFRA Abies fraseri 3 303037 3943039\n", "4 ATBN-01-0536 07-25-2002 1000 ABIEFRA Abies fraseri 3 273927 3935488\n", "5 ATBP-01-0001 05-11-1999 10000 ABIEFRA Abies fraseri 8 273857 3937870\n", "6 ATBP-01-0005 08-25-1999 10000 ABIEFRA Abies fraseri 4 273876 3935462\n", " elev tci streamdist disturb beers \n", "1 1660 5.701460 490.9 CORPLOG 0.22442864\n", "2 1712 3.823586 454.0 VIRGIN 0.83408785\n", "3 1722 3.893762 453.4 LT-SEL 1.33325863\n", "4 1754 3.145527 492.5 SETTLE 1.47124839\n", "5 1945 5.682065 492.4 VIRGIN 1.64377141\n", "6 1751 5.417182 545.9 SETTLE 0.00032873" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
    \n", "\t
  1. 8971
  2. \n", "\t
  3. 13
  4. \n", "
\n" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item 8971\n", "\\item 13\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. 8971\n", "2. 13\n", "\n", "\n" ], "text/plain": [ "[1] 8971 13" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dat = read.csv('./Data/treedata.csv') #choose the treedata.csv dataset\n", "head(dat)\n", "dim(dat)\n", "dat2 = subset(dat,dat$species==\"Tsuga canadensis\")\n", "\n" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "4.65951742627346" ], "text/latex": [ "4.65951742627346" ], "text/markdown": [ "4.65951742627346" ], "text/plain": [ "[1] 4.659517" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "mean(dat2$cover)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "4.471835471508" ], "text/latex": [ "4.471835471508" ], "text/markdown": [ "4.471835471508" ], "text/plain": [ "[1] 4.471835" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "var(dat2$cover)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "\n", " 1 2 3 4 5 6 7 8 9 10 \n", " 39 71 166 110 92 80 108 60 19 1 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "table(dat2$cover)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "If these counts were distributed exactly from a Poisson process, what would they look like, assuming the same mean (and variance)?\n", "\n" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAEDWlDQ1BJQ0MgUHJvZmlsZQAA\nOI2NVV1oHFUUPrtzZyMkzlNsNIV0qD8NJQ2TVjShtLp/3d02bpZJNtoi6GT27s6Yyc44M7v9\noU9FUHwx6psUxL+3gCAo9Q/bPrQvlQol2tQgKD60+INQ6Ium65k7M5lpurHeZe58853vnnvu\nuWfvBei5qliWkRQBFpquLRcy4nOHj4g9K5CEh6AXBqFXUR0rXalMAjZPC3e1W99Dwntf2dXd\n/p+tt0YdFSBxH2Kz5qgLiI8B8KdVy3YBevqRHz/qWh72Yui3MUDEL3q44WPXw3M+fo1pZuQs\n4tOIBVVTaoiXEI/MxfhGDPsxsNZfoE1q66ro5aJim3XdoLFw72H+n23BaIXzbcOnz5mfPoTv\nYVz7KzUl5+FRxEuqkp9G/Ajia219thzg25abkRE/BpDc3pqvphHvRFys2weqvp+krbWKIX7n\nhDbzLOItiM8358pTwdirqpPFnMF2xLc1WvLyOwTAibpbmvHHcvttU57y5+XqNZrLe3lE/Pq8\neUj2fXKfOe3pfOjzhJYtB/yll5SDFcSDiH+hRkH25+L+sdxKEAMZahrlSX8ukqMOWy/jXW2m\n6M9LDBc31B9LFuv6gVKg/0Szi3KAr1kGq1GMjU/aLbnq6/lRxc4XfJ98hTargX++DbMJBSiY\nMIe9Ck1YAxFkKEAG3xbYaKmDDgYyFK0UGYpfoWYXG+fAPPI6tJnNwb7ClP7IyF+D+bjOtCpk\nhz6CFrIa/I6sFtNl8auFXGMTP34sNwI/JhkgEtmDz14ySfaRcTIBInmKPE32kxyyE2Tv+thK\nbEVePDfW/byMM1Kmm0XdObS7oGD/MypMXFPXrCwOtoYjyyn7BV29/MZfsVzpLDdRtuIZnbpX\nzvlf+ev8MvYr/Gqk4H/kV/G3csdazLuyTMPsbFhzd1UabQbjFvDRmcWJxR3zcfHkVw9GfpbJ\nmeev9F08WW8uDkaslwX6avlWGU6NRKz0g/SHtCy9J30o/ca9zX3Kfc19zn3BXQKRO8ud477h\nLnAfc1/G9mrzGlrfexZ5GLdn6ZZrrEohI2wVHhZywjbhUWEy8icMCGNCUdiBlq3r+xafL549\nHQ5jH+an+1y+LlYBifuxAvRN/lVVVOlwlCkdVm9NOL5BE4wkQ2SMlDZU97hX86EilU/lUmkQ\nUztTE6mx1EEPh7OmdqBtAvv8HdWpbrJS6tJj3n0CWdM6busNzRV3S9KTYhqvNiqWmuroiKgY\nhshMjmhTh9ptWhsF7970j/SbMrsPE1suR5z7DMC+P/Hs+y7ijrQAlhyAgccjbhjPygfeBTjz\nhNqy28EdkUh8C+DU9+z2v/oyeH791OncxHOs5y2AtTc7nb/f73TWPkD/qwBnjX8BoJ98VVBg\n/m8AAEAASURBVHgB7N0JnBxF2fjxqp7Z+8gFIdyHCMiRTUI4REVBRYEXhCSzvr7e+ooC4uvB\nKy+QhM4BCIroi4Agnn9BzeQARKO8oiiHgAnZjYIEBeRMCMkmm72P6fo/naR7enY3yczuzuxM\n96/9lF3VU91V9e3Nss90d7VSLAgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAC\nCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAA\nAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCA\nAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg\ngAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAII\nIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAC\nCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAA\nAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCA\nAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg\ngAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAII\nIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAC\nCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAA\nAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCA\nAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg\ngAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAII\nIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAC\nCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAA\nAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCA\nAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg\ngAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAII\nIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAC\nCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAA\nAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCA\nAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg\ngAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAII\nIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAC\nCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAA\nAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCA\nAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg\ngAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUPQCuuh7GJ0OzpShlkVnuIx0rASmTJlS\n3tjY+GYty1j1IV/tvvHGG2133XXXi/k6PsdFAAEEEEAAgV0K9Monq3f5aQl9ELo/kErIPthV\nNzj6S3ADeQQQQAABBBBAAAEESkzA/Zu25IOkeImhh7W73pWjOhmgG32zIJA3gW3btn2pS8Wu\n+u2/tlTlrZExOPDEqrh670ET1Le+9a36yy67rGcMukCTCCCAAAIIRFWgXAbeJsldl/zCFaTi\nOIVvlW48KqlCEgFScZyT0PbCGHPplp7+hb8OWYA0qTKu3n/wBPe8Vcndg92hPYEMDAEEEEAA\ngeITcAMj98vJUyT9ufi6l1uPrNyqUxsBBBBAAAEEEEAAAQQQCK8AAVJ4zy0jQwABBBBAAAEE\nEEAAgRwFCJByBKM6AggggAACCCCAAAIIhFeAACm855aRIYAAAggggAACCCCAQI4CBEg5glEd\nAQQQQAABBBBAAAEEwitAgBTec8vIEEAAAQQQQAABBBBAIEcBAqQcwaiOAAIIIIAAAggggAAC\n4RUgQArvuWVkCCCAAAIIIIAAAgggkKMAAVKOYFRHAAEEEEAAAQQQQACB8AoQIIX33DIyBBBA\nAAEEEEAAAQQQyFGAAClHMKojgAACCCCAAAIIIIBAeAUIkMJ7bhkZAggggAACCCCAAAII5ChA\ngJQjGNURQAABBBBAAAEEEEAgvAIESOE9t4wMAQQQQAABBBBAAAEEchQgQMoRjOoIIIAAAggg\ngAACCCAQXgECpPCeW0aGAAIIIIAAAggggAACOQoQIOUIRnUEEEAAAQQQQAABBBAIrwABUnjP\nLSNDAAEEEEAAAQQQQACBHAUIkHIEozoCCCCAAAIIIIAAAgiEV4AAKbznlpEhgAACCCCAAAII\nIIBAjgIESDmCUR0BBBBAAAEEEEAAAQTCK0CAFN5zy8gQQAABBBBAAAEEEEAgRwECpBzBqI4A\nAggggAACCCCAAALhFSBACu+5ZWQIIIAAAggggAACCCCQowABUo5gVEcAAQQQQAABBBBAAIHw\nChAghffcMjIEEEAAAQQQQAABBBDIUYAAKUcwqiOAAAIIIIAAAggggEB4BQiQwntuGRkCCCCA\nAAIIIIAAAgjkKECAlCMY1RFAAAEEEEAAAQQQQCC8AgRI4T23jAwBBBBAAAEEEEAAAQRyFCBA\nyhGM6ggggAACCCCAAAIIIBBeAQKk8J5bRoYAAggggAACCCCAAAI5ChAg5QhGdQQQQAABBBBA\nAAEEEAivAAFSeM8tI0MAAQQQQAABBBBAAIEcBQiQcgSjOgIIIIAAAggggAACCIRXgAApvOeW\nkSGAAAIIIIAAAggggECOAgRIOYJRHQEEEEAAAQQQQAABBMIrQIAU3nPLyBBAAAEEEEAAAQQQ\nQCBHAQKkHMGojgACCCCAAAIIIIAAAuEVIEAK77llZAgggAACCCCAAAIIIJCjQDzH+mGoPkEG\nMU5ShaR2SVsldUhiQQABBBBAAAEEEEAAgYgLROUK0nQ5z3dI2iipRdILkp6R9IokN0h6TtJt\nkvaWxIIAAggggAACCCCAAAIRFYjCFaT5cm4X7Dy/L8n6z5LcIMkNjNwrSRMlHSTpAkmzJX1B\n0l2SWBBAAAEEEEAAAQQQQCBiAmEPkBJyPt3g6DeSrpT0pKShFi0b3yHpBkl3SvqXpEclsSCA\nAAIIIIAAAggggECEBMJ+i915ci6fl+SudxUcuafbSPqTpDMktUn6mCQWBBBAAAEEEEAAAQQQ\niJhA2AOkqXI+3VvqerI8r1uk3lpJ+2dZn2oIIIAAAggggAACCCAQIoGwB0jr5VwdL6ksy3Pm\nznDnBlXuBA4sCCCAAAIIIIAAAgggEDGBsAdIP5bzeZSkZZJO2s259Z5Bcp9VqpZ0927q8hEC\nCCCAAAIIIIAAAgiEVCDskzS4s9FNlrRY0jmSXpX0iqTNkrZJqpfkzmJ3sKR9JfVL+oqkRySx\nIIAAAggggAACCCCAQMQEwh4guZMv3CjpHklXSzpV0sArSZ2y7TVJ7gx235b0siQWBBBAAAEE\nEEAAAQQQiKBA2AMk75S6M9l9aGfBvWrkvv+oUpL74thWSSwIIIAAAggggAACCCCAgIpKgBQ8\n1e6tdW5iQQABBBBAAAEEEEAAAQQyBKIYIAUB3GePjpTkXklaJ6lLEgsCCCCAAAIIIIAAAghE\nVCDss9h9Vs6rO1FD1YDze5yU/yLpX5J+K2mNJHdK8MskxSSxIIAAAggggAACCCCAQAQFwh4g\nuRMyuM8elQfO7YGSf0jSTEmrJN0m6WeS2iV9TdLXJbEggAACCCCAAAIIIIBABAWieIudGwS5\nkzRcIuk7gXPuvv/oe5K+JOnXkn4naSTLAbJzMDDb3bH2292HfIYAAggggAACCCCAAAKFEYhi\ngHSK0D4hKRgcudrudN//Kel9kk6XNJIA6XDZ/x+Scl3CfkUvVw/qI4AAAggggAACCCBQUIEo\nBkjuNN8P7ELZnaThGUnH7uLzbDf/UyruK6ksyx3c2wCvk8TzT1mCUQ0BBBBAAAEEEEAAgXwI\nRDFAWi2Q7iQNQy2TZOMJkn401Ic5btuQQ/0tOdSlKgIIIIAAAggggAACCORJICq3dLm31N0p\n6cuSHpXkTtBwrqTgcpAU3Nvu3OeG/hj8gDwCCCCAAAIIIIAAAghEQyDsV5DcyRbGS5om6T92\nJlltX9xg6N6d+bNlfbck18MNoNxZ7VgQQAABBBBAAAEEEEAgYgJhD5CWyvl0k7u4M9e5gZKX\ntLtx5+I+++M+f+QGRu4sdkYSCwIIIIAAAggggAACCERMIOwBUvB0tkrBvXVuqNvn/k+2u88f\n9UliQQABBBBAAAEEEEAAgYgKRClA2t0pdq8esSCAAAIIIIAAAggggEDEBaIySUPETzPDRwAB\nBBBAAAEEEEAAgWwECJCyUaIOAggggAACCCCAAAIIREIg7LfYfUbOovti2FwXdya7P+e6E/UR\nQAABBBBAAAEEEECgtAXCHiBdJKfHnbUu18WWHQiQclWjPgIIIIAAAggggAACJS4Q9gDpTDk/\nyyW9VdI9kn4gKZtlXTaVqIMAAggggAACCCCAAALhEgh7gLRBTtdpktypvd1gaYGkNZJYEEAA\nAQQQQAABBBBAAIFBAlGYpKFHRv3pnSO/aZAAGxBAAAEEEEAAAQQQQACBnQJRCJDcoT4l6QpJ\n7oQNx0liQQABBBBAAAEEEEAAAQQGCUQlQHIHfoOkqZL+6hZYEEAAAQQQQAABBBBAAIGBAlEK\nkAaOnTICCCCAAAIIIIAAAgggkCFAgJTBQQEBBBBAAAEEEEAAAQSiLECAFOWzz9gRQAABBBBA\nAAEEEEAgQ4AAKYODAgIIIIAAAggggAACCERZgAApymefsSOAAAIIIIAAAggggECGAAFSBgcF\nBBBAAAEEEEAAAQQQiLIAAVKUzz5jRwABBBBAAAEEEEAAgQwBAqQMDgoIIIAAAggggAACCCAQ\nZQECpCiffcaOAAIIIIAAAggggAACGQIESBkcFBBAAAEEEEAAAQQQQCDKAgRIUT77jB0BBBBA\nAAEEEEAAAQQyBAiQMjgoIIAAAggggAACCCCAQJQFCJCifPYZOwIIIIAAAggggAACCGQIECBl\ncFBAAAEEEEAAAQQQQACBKAsQIEX57DN2BBBAAAEEEEAAAQQQyBAgQMrgoIAAAggggAACCCCA\nAAJRFiBAivLZZ+wIIIAAAggggAACCCCQIUCAlMFBAQEEEEAAAQQQQAABBKIsEI/y4Bk7Aggg\nkE8BO/HoRMepPsGKqXEpR6/f2vHqEzetPKsnn21ybAQQQAABBBAYmQAB0sj82BsBBBAYJGDP\naj5AWep6o1TCiuntv2djcr1+Uu0BbVc1Nn27pe21xQRKg9jYgAACCCCAQFEIcItdUZwGOoEA\nAmERmJdYe5yK61XK0h/Sekdw5I9NqzqtrLkT6/Z/8KvnPlznbyeDAAIIIIAAAkUjQIBUNKeC\njiCAQKkL2Oesqra0uVfGsc/uxqKVPrmqsv6O3dXhMwQQQAABBBAYGwECpLFxp1UEEAijQEX5\n5yX4OSSboWmlGufNWnNCNnWpgwACCCCAAAKFEyBAKpw1LSGAQMgFjFaJXIYYi1k51c/l2NRF\nAAEEEEAAgeEJECANz429EEAAgaEEjhpq4y63aZVb/V0eiA8QQAABBBBAYLQECJBGS5LjIIAA\nAggggAACCCCAQMkLECCV/ClkAAggUCwC8lzRulz6Ypzc6udybOoigAACCCCAwPAECJCG58Ze\nCCCAwCABR6vkoI272aC1yan+bg7FRwgggAACCCAwSgIESKMEyWEQQACBzq3mO8aol7KTMMvs\n5LQngnXtc5/czz6/eXJwG3kEEEAAAQQQKKwAAVJhvWkNAQRCLPCN+xs6tEp9QBnzxh6G+RfV\n1vWpYJ35ieb/UpXxl1WZXn9VoumHdmLVQcHPySOAAAIIIIBAYQQIkArjTCsIIBARATs5vUmp\nvpnGmKUyZCdz2KZDtlzXatrfaa88eVvwM3l/0hek7P5OtrS2PqFU+bNXJdbecPn5j08K1iOP\nAAIIIIAAAvkViOf38BwdAQQQiJ6AnZz5kow6cXniyb3LlD5RGTVeOfq1tljnYzcuPaVrKBF5\nHmmNUvow/zOtKmTShy+Xl1X9p1xdur6zVX3LvULlf04GAQQQQAABBPIiQICUF1YOigACURD4\n6rkP11VV1t8hAdDJ8pLYWxYumXpdcNzXJme4t9r9KrhtV/n2rerjtfXOS0pbFykJjrx6EiTV\na60X14xTn5dAaeGG5/vuuH31zD7vc9YIIIAAAgggMLoC3GI3up4cDQEEIiJgJ5aUS3C0XAKY\nRq3VQfLL9Gtzz1v1puEO3706ZC+d9uW+VP+RRpmfyHEybs+TNqbIvXe37HtY+dPzE00flM+l\naRYEEEAAAQQQGG0BAqTRFuV4CCAQBQGtzJE/kgjlPf5gjUnFrbIevzzMzNXLZ7y4YEnDx1Wf\naZDnmO4beBgJlA63tPXzqxqbV81PrHnvwM8pI4AAAggggMDIBAiQRubH3gggEEEBmTzhGzKV\nwoeCQ3e0vtJe3vBKcNtI8vaKhr8tSDaco4zzDqXMIwOPJZM6zLB07H470fw7e/aTMwd+ThkB\nBBBAAAEEhidAgDQ8N/ZCAIGICsyf0/QVuYrz5eDw5Za4Qc8fBT8fSV7elfSwvaTh7TJ1uDt9\n+FODjqX1u5UVf8JuXLtk7uw1bx70ORsQQAABBBBAICcBAqScuKiMAAJRFpjf2Pwhub3t60ED\nuQ1uuV6y4pLgtnzk7WTDvSq5YqpMCPHJQS+jlctJ0mYiZllPXzWn+dYrZq3aNx994JgIIIAA\nAghEQYAAKQpnmTEigMCIBebPaX63NvpHEoqkJ0cw5iH9RsuHbWVnTKgw4sZ2cQC3HTs59Uct\n7a8cIbfefUWCpc3BqjLbXVxb+nNlsbJ/SqB09WWJVeOCn5NHAAEEEEAAgT0LECDt2YgaCCAQ\ncQE7sWaazCC3Qm6tK/cp3Nvd+pxz7QdP6/a3FShz08qzeuTWu2+q9s7D5La7q+UqVmewaQmU\nqiVQuqJSlT/v3hJov+sPlcHPySOAAAIIIIDArgUIkHZtwycIIICAmptoPtSo2Eq5blQX4HhZ\npdT77bunbw1sK3jWXnnyNrn1bq5WPW+SQOlWCZT6g52QgG6iZVnfUJMnPSuB0icTiSWx4Ofk\nEUAAAQQQQGCwAAHSYBO2IIAAAtsF7HNW7RXT6jcSaEwJkGxJpZwzR3PGusCxh5W1kydukEDp\nIq363yKB0i/k1jsz4EAHSqD0g6PVUWvnz1n7gQGfUUQAAQQQQACBgAABUgCDLAIIIOAJSHBU\nrSrL7pNHjo7wtknU0S3P/py7aNm0wbPJeZXGcG0nj/+nBEr/nlLqBOnr7wZ2RQK9oy1L3S3T\nlD8yb06zTB/OggACCCCAAAIDBQiQBopQRgCByAvIMztxU1WeVFqfFMBwjHH+w512O7CtKLOL\nklNXL1gy9b1yG+B75VrS6oGdlEDplJil/2Qn1t43L7H2uIGfU0YAAQQQQCDKAgRIUT77jB0B\nBIYWmDzpdpmq7qzghxIdfX5hctqK4LZiz9vLpv5OZr07QSnng3Lr3T8G9Vers+UWwiZ52exP\nrpz15MGDPmcDAggggAACERQgQIrgSWfICCCwawF3emz59JPBGvLeoYULkw23BreVUN7YS6Yt\nUW+0HC2B0oVyRWn9gL5bcqXso/FY/NmrGptvdJ+7GvA5RQQQQAABBCIlQIAUqdPNYBFAYHcC\n9pzmi9zpsYN1jKN+sCA59argtlLMy3Tk/RIofVd19x6ulLlSrii1Bscht92Vy/NWX1SVMjV4\nY9M8O/GH2uDn5BFAAAEEEIiKAAFSVM4040QAgd0K2HOaZilL35RRyahf6U2bP5uxrcQL9i9n\ndtpLGq5RquMwCZRu2D7xRHBMMp25payFSk/65/zGtRdfcPyqsuDH5BFAAAEEEAi7AAFS2M8w\n40MAgT0KuDO6Gcu6Uyqmfyca87hcbWl0r7zs8QAlWMFOntIigdKl/T3d7ix9P5QrSjL5Xcay\nj2B8Z9/Dyp+Z39j8IflEHstiQQABBBBAIPwC6T8Gwj9WRogAAggMEpg3u+kYS6t75a//Su9D\neY3Qs6q779/cqy3etrCur77nxJftJVM/pVRqqgRJ9wwcp9x6d5g8pHSXTOSwev7spvcN/Jwy\nAggggAACYRMgQArbGWU8CCCQtYA9q/kAy9LyIlg93ttJJmTYoHud90lwtMnbFoW1nZzxtLxD\n6TzlpN4mgdJDg8as9XQrZv3Gbmz+vZ1oOnHQ52xAAAEEEEAgJAIESCE5kQwDAQRyE/ifs9dO\nUDHlBkcHeHvK8zjbtEqdad89/V/etqit7aXTH5VA6VTlOOdIoPTXwePXpyltPS6B0tK5ieYj\nB3/OFgQQQAABBEpbgACptM8fvUcAgWEIyItgKyuqzb0yvfUx3u5y5ajXOGaWnZze5G2L8tpe\nOu0+lVwxTTnm4xIovTjYQs+OKfU3u3Htd2Vq8OrBn7MFAQQQQACB0hSIl2a36TUCCCAwPAFb\n2Zbae9Jd8mzN2/0jyENH2piPL1ja8IC/jYwSK0cttX9yyZm//sWkmv0vNJa6UqYC99+TJFff\n3P+GfNZUlPXI+r+GIrNnr57qxMreYRlnkkzzsLHf6D8sTjasG6ou2xBAAAEEECgGAQKkYjgL\n9AEBBAonkDj/O/KH+vnBBh2tviIvgv15cBv5tMBNK89yA6Bv2Wc+9gNVU32pssyXZVK7Gr+G\nVv5tit62ueevfks8Hr9NrtK9Y/utCnrHDQtxmQ1DJnxY2ZdKXXj18hlDXJnyjsAaAQQQQACB\nsRHgFruxcadVBBAYAwF7ztq58gf7hRlNG/P1hUum3pixjcKQAvbKk7fZS6fO7+3uepM8o3Sz\n3HrXtX1SC2WuC+4wb9aaE2JlZY+5wVFwu5/X+sx4LPYEzzD5ImQQQAABBIpIgACpiE4GXUEA\ngfwJ2I1Nn5K3HC0KtmCMuUsmJLgsuI38ngWuuffk1+UZpc+rN1rqFySn7mcnpz3h7eU+jySz\n3S2XC0X13rah1nJ73mS5hWFZIrFEHmViQQABBBBAoHgECJCK51zQEwQQyJPA/MSas43RtwUP\nLzPW/W79832fkG2SZRmOwM6X6Gb6VZRdEJwZcLfHlUkyjlFHfXC3dfgQAQQQQACBAgsQIBUY\nnOYQQKCwAvNmN5+klbVk54QCOxo3Zk1X97ZZt6+e2VfY3oS/NaP1B3IZpdEqp/q5HJu6CCCA\nAAIIDEeASRqGo8Y+CCBQEgL2+U1HmJi6T2ZeS09DbcwLvT1dZ15/79vbSmIQpdfJw3LqslG5\n1c/p4FRGAAEEEEAgdwECpNzN2AMBBEpAwE48MUWuZvw2OC21TCrwRr/jvM99hqYEhlCSXdTK\nyIx38gRSlovWbn0WBBBAAAEEikeAW+yK51zQEwQQGCUBmY663qiKlRIcHZI+pOmQx43+bfGy\n6f9IbyM36gJarc3pmCbH+jkdnMoIIIAAAgjkLkCAlLsZeyCAQBELPHLvpjJTW7VCnjma5nVT\nZquTC0c6EZxtzfuM9SgLpJyf5nLEVMq5M5f61EUAAQQQQCDfAgRI+Rbm+AggUDABCYTU73++\n4Q4Jjk4PNipXkj6zcOnUlcFt5PMjYC+bfrfcyvhANkc3yvx80fLpj2RTlzoIIIAAAggUSoAA\nqVDStIMAAnkXuP8n65WTMo0ZDRnncjs59UcZ2yjkVaCnv/uDEqz670YaqjF3mnXd1ffpoT5j\nGwIIIIAAAmMpQIA0lvq0jQACoybw2h/b1GO/3px5PMe5WW6r+1rmRkr5Frh2xUmbW9pfPVVJ\ncCqB0ivB9uQi3/OO43zhafPM++1fzuwMfkYeAQQQQACBYhBgFrtiOAv0AQEERiTQ1tylXv9V\n64BjmGVq6d1fGLCRYoEEblp5ljs7nRucXjc30XxI3ElNUpazcUFy5ksF6gLNIIAAAgggMCwB\nAqRhsbETAggUi0DnP3vU6ysygyN5tuVPLW2vfvgmZTvF0s8I98MsTja8ION3EwsCCCCAAAJF\nL0CAVPSniA4igMCuBLpf61Prf75VqUAYpLV6SvU4H9h5BWNXu7K9CATsRPP7pRtfkNvunlr/\nQt8Vt6+e2VcE3aILCCCAAAIRFyBAivgPAMNHoFQF+lr61fr/t0WZXnncf+dSP6lMVY6LnXvR\n146QqImlmAXcd1VJ/5YrraskqD1zv8PKjFqtvlrMfaZvCCCAAALREGCShmicZ0aJQKgEUh2O\neu0nW5S79pZYlVYfueIQdeG1b37N28a6eAV6assrJDiq8Huo1RfnzW46xi+TQQABBBBAYIwE\nCJDGCJ5mEUBgeAJOrwRHP21RfS0p/wBaroUf+Ym91N4HVPrbyBS3wLXJGW/Is2I/TfdSl1kx\nfUu6TA4BBBBAAIGxESBAGht3WkUAgWEImJRRG36xVfW82p/eWyu1T2K8qjs0fTEi/SG5YhbQ\nfeq/ZRpw/3ZIeaHvqfMbmz9ezH2mbwgggAAC4RcgQAr/OWaECIRGYOM921TnP3ozxrP32fWq\n9i1cOcpAKZGCvaJho9bm8mB3tVHX2+etGR/cRh4BBBBAAIFCChAgFVKbthBAYNgCm/+vTbU1\ndWXsP+FdNWrcidUZ2yiUmMCSu2+XWexWeb3WWk9W5TH3/UksCCCAAAIIjIkAAdKYsNMoAgjk\nIrD1sQ615aGOjF3qZlSpSafXZWyjUHoCtryrSjv9F0rP0zNuKPWZebPWnFB6o6HHCCCAAAJh\nECBACsNZZAwIhFig/alutWllW8YIq4+oUJPPdWeJZgmDgL1sxirlOLcGxmLFYrFbJXjiv1EB\nFLIIIIAAAoUR4D8+hXGmFQQQGIZA17961Yal8gx/+lVHquKAMjWlcbzSlszOwBIegX4zVyZs\n2OgPSKvjVeK8i/wyGQQQQAABBAokQIBUIGiaQQCB3AR6Xu9T6+/aolR6Nm9VNimm9vvIBGWV\nExzlpln8te27p281xvlyZk/14ivOfWyfzG2UEEAAAQQQyK8AAVJ+fTk6AggMQ6CvNbX9RbBO\nd/rSUazWUvt9bIKKVfNraxikJbHLwqXT75SrhX/0O6v1uLKKqm/6ZTIIIIAAAggUQIC/NAqA\nTBMIIJC9QKpLXgT7kxaVaks/s68r9PbgqGyCvBGWJeQC/XJbnenzBimz2v2HPWfNu7wyawQQ\nQAABBPItQICUb2GOjwACWQs4fUatv3OL6nsjcF9dTKl9PzReVUwpy/o4VCxdATs542lj9A0Z\nI7Bit1xw/Cp+ADJQKCCAAAII5EuAAClfshwXAQRyEjCOUa8nt6rul/yLB9v332fWOFV9WEVO\nx6JyaQvo7t5F8m6klwKjeMuUQ8suDZTJIoAAAgggkDcBAqS80XJgBBDIReCN+7apjmd6MnbZ\n6/11qu64qoxtFMIvYP9yZqdW5pLgSLVWc6+c9eTBwW3kEUAAAQQQyIcAAVI+VDkmAgjkJNDy\nh3a1bVVXxj7j31ajxp9Sk7GNQnQE7GTDvTLt933eiOVZpOqyWOzbXpk1AggggAAC+RIgQMqX\nLMdFAIGsBFpXdyo3QAoutVMr1aQzaoObyEdQQJ5E+4IyJh05a/0BO9F8bgQpGDICCCCAQAEF\nCJAKiE1TCCCQKdDxTLd6495tGRur3lSu9jl/nJIrBhnbKURPYHGy4QWl1eLgyI1W3/5S4lHu\nuwyikEcAAQQQGFUBAqRR5eRgCCCQrUDvxn61QSZlkPfe+EvFvnG177+PVzpGcOSjRD1j1n1D\nriKt8xi00oeM0zXzvDJrBBBAAAEERluAAGm0RTkeAghkJdDW3BV4241S8Qkxte9HJyirgl9L\nWQFGpJKdbOyVCQ4vDg5XpgH/ytxE85HBbeQRQAABBBAYLQH+EhktSY6DAAI5CVQckH6tjVW9\n40Ww8Vp56RELAgMEFi5teEAmbLjL2yx3X5bLT8otXpk1AggggAACoylAgDSamhwLAQSyFqh9\nS6Xa98Pj1aT31KoDP7eXKp8Uz3pfKkZPoC/Vd6ncjek/sCbPqJ0+f86aD0dPghEjgAACCORb\ngAAp38IcH4EICvS19G+fme61n25Rr3x/8/ZnjbbfUtcfeOBIXGqOrFQTTq1VZeO5chTBH5Oc\nhnzN8pnrjePMDe6kdewb9pmP1Qe3kUcAAQQQQGCkAnxlO1JB9kcAAV9AboPaHhht+VOHUo6/\nWTJ9qv2v3Wrz79vVlA+OV5X7pW+vC9Yij8DuBP6un73lGHPkJ2WKw+luPbnVboqprb5ashkv\nld3dMfgMAQQQQACBPQlwBWlPQnyOAAJZC2xa2aa2PDgwOErv3r8lpV79fovq2dCX3kgOgSwF\nksnGVMpRF8rMh/6lSK3MhfNmN20PmLI8DNUQQAABBBDYrQAB0m55+BABBLIV6Hy+R7U+1rnH\n6qbPqNeXtiojU5OxIJCrwKJlDY/Lu5Fu9/eT++xilr5VyswN76OQQQABBBAYiQAB0kj02BcB\nBHyBrY/IlaMsF/cdSJ3P9WZZm2oIDBAw7VfIRaRN/latT7Ibmz7rl8kggAACCCAwAgECpBHg\nsSsCCKQFul7ILeDpkitOLAgMR8BOntKijf7vzH2tay5PPLl35jZKCCCAAAII5C5AgJS7GXsg\ngMAAgVS3o0z/gI17KPa3ZczisIfafIxApoCdnPpjpcwjga0TKkzs64EyWQQQQAABBIYlQIA0\nLDZ2QgCBoIBVLo9/5PjbJFad4w7BBskjINFRyugLZebEdGiu9cfsRNPbwUEAAQQQQGAkAvyF\nMhI99kUAge0C2tKq8oDcpu6uPCi3+lAjMFBgUXLqX2U+u2/527WSO+/0rfa7/sArLHwUMggg\ngAACuQoQIOUqRn0EEBhSYNyJ1UNuH2pjrM7a/pLYoT5jGwK5CGjdskAZ86q3j8RIx6rJE7/o\nlVkjgAACCCCQqwABUq5i1EcAgSEFao+rVNVHVAz5WcZGuRtv8rn1yipjVuYMFwrDErCTp7U7\njvqv4M7G6KvsWc0HBLeRRwABBBBAIFsBAqRspaiHAAK7FdBaqymN41TNW3YdJGm5q26fOVLn\nyMrdHosPEchFYOGyhmXySNJvvX3kR7HWxNS3vTJrBBBAAAEEchEgQMpFi7oIILBbAavcUvt+\naILa9yMTtgdK8XpLWZValU+Oq/Fvq1EH/9fequ64qt0egw8RGJaA6f+8vHq429tXAvZZdqL5\n/V6ZNQIIIIAAAtkK8CBrtlLUQwCBrAVq5FY7N7EgUCgBO3n8P2UGu2uVthb4bWr9HZmw4Vj7\nwdP8wMn/jAwCCCCAAAK7EOAK0i5g2IwAAgggUFoCm9tfu84Y9c9Ar99k9p50eaBMFgEEEEAA\ngT0KECDtkYgKCCCQjYC8j0b1bu5XTi8vgM3GizqjL3DTyrN6jON8PnhkmQrkMjux+vDgNvII\nIIAAAgjsToAAaXc6fIYAAlkJuMHRhp9tVS99e5N68cZNqndT+t2dWR2ASgiMksDCZdPcyRqS\n/uG0qjCq7Ga/TAYBBBBAAIE9CBAg7QGIjxFAYM8Cnf/sVR3P9GyvmOpwVNvarj3vRA0E8iTQ\nZ5wvScze7h1eZrU7w25savTKrBFAAAEEENidAAHS7nT4DAEEshJofbwzo175Xsz/kgFCoaAC\nVyenvWq0mp/RqNHf/Oq5D9dlbKOAAAIIIIDAEAIESEOgsAkBBLIX6NuaUp3/2HH1yN3LqpaX\n0BzNe46yF6RmPgSsjZtvUsb81T+21vtXl9emZ7jzPyCDAAIIIIBApgABUqYHJQQQyFGg9S9y\n9UheQOMt9cdXKx2XR+NZEBhDAZnauz+Vci6Un03/p9NofYk9e/XUMewWTSOAAAIIlIAAAVIJ\nnCS6iECxCph+o9qeDDxvJHHRuJm8CLZYz1fU+rVo+fRH5FmkH3rjlpfHxo1VdquUieA9FNYI\nIIAAAoMECJAGkbABAQSyFWh/qlu5kzJ4S/WbK1TZBJ4/8jxYj72A7um9TIKkFq8nMmHDKfMT\nzZ/yyqwRQAABBBAYKECANFCEMgIIZC3Q+kTm5AzjTqrOel8qIlAIAfuXMzdpYy4LtiVB0tfs\nxKMTg9vII4AAAggg4AkQIHkSrBFAICeBng19qvvlPn+f+ISYqn5TuV8mg0CxCNhLG74vjyI9\n5vVHK72X0TXXeWXWCCCAAAIIBAUIkIIa5BFAIGuB1scGXD06QSZnsHi0I2tAKhZSwGjjTthg\nUl6j2uhP27OaT/bKrBFAAAEEEPAECJA8CdYIIJC1QKpbXgb7126/vpbHjupnMDmDD0Km6ATs\n5PQm6dR3/I7JZSQTU7cmEkti/jYyCCCAAAIIiAABEj8GCCCQs0Dbmi5l+vzZk1XtsVUqVs2v\nk5wh2aGwAu1d82XS7/VeozKr3bRjzJGXeGXWCCCAAAIIuAL8RcPPAQII5Cyw/d1Hgb3Gncjk\nDAEOskUqYK88eZvcZvflYPeMpRdcMWvVvsFt5BFAAAEEoi1AgBTt88/oEchZoPO5HtW3yX+U\nQ1XsF1eVB5TlfBx2QGAsBGTChp9LkPSA17Y8NVdfHiu70SuzRgABBBBAgACJnwEEEMhJgKm9\nc+KichEK9Ct1sbwbqdfvmtYftGevfY9fJoMAAgggEGkBAqRIn34Gj0BuAv3bUqpjXY+/k1Wp\ntz9/5G8gg0AJCCxONqxT2rk+2FUTMzfbiSXMUx9EIY8AAghEVIAAKaInnmEjMByB7c8eOek9\n3ZnrrDKm9k6LkCsVgW2m8xq51e4Fr78yqd0Rjj4i44Wy3mesEUAAAQSiJUCAFK3zzWgRGLaA\nSRm1bXVXxv718u4jFgRKUeDG5CldjnIyZrCzjL58bqL50FIcD31GAAEEEBg9AQKk0bPkSAiE\nWqD96W6Vak9fPqo+vFyVT5IXILEgUKICC5PTfyXTfq/wu691VUzr9LuS/A/IIIAAAghESYAA\nKUpnm7EiMAKBQZMzMLX3CDTZtXgEer+olOnw+iM3jJ41P9F0vldmjQACCCAQPQECpOidc0aM\nQM4CPRv7VPeLff5+8XGWqj6iwi+TQaBUBezkzJeUoxcG+29p69uXntFcE9xGHgEEEEAgOgIE\nSNE514wUgWELtD7embHvOHn2SFtMzpCBQqFkBV57ofdGmfb76cAADqwdp64KlMkigAACCERI\ngAApQieboSIwHAGnx1Ftzd3pXWNK1cnsdSwIhEXg9tUz+xzVf1HGeLT64rzZTcdkbKOAAAII\nIBAJAZ6wjsRpZpAIDF9gW1OXMr3GP0DtMZUqXitRUgkvxpiJ0v05ksL4JVG7jOtOrXX6pJXw\nuSpU1xclZ/zxqsbmn8h03x/b0aYus2LqFsm/s1B9oB0EEEAAgeIQIEAqjvNALxAoWoFtT2RO\n7T0uHJMznC23VN3a2Z9Kv/W2aM9A9h2zJCqqiluVsseDkl7Jfk9qugK6T/23iZtzhXH89rLS\np9pzmj9mL234CUIIIIAAAtERIECKzrlmpAjkLND5Qo/qfaPf3698n7iqOqjcL5dwRveknN67\nn28J1b2CtWWW+sBhk9zTwgNiw/jhtFc0bJyfaL5C8NwrR9sXo9XX7fPW3GvfPX2rt401Aggg\ngEC4BcJ4e0m4zxijQ6CAAoOuHp3Mi2ELyE9TYyBgJVfcJlcXV3lNy9WkySZuXeuVWSOAAAII\nhF+AACn855gRIjAsgf62lGr/e3pyBqtCq7rj3Lu3WBAIr4CtbEc7/RfKCP23IsuMjRfMm7Xm\nhPCOmpEhgAACCAQFCJCCGuQRQMAX2LZKnj3y/0SUmeumVymrnF8ZPhCZ0ArYy2asMsp8NzBA\nKxaL3SrBE/8AAihkEUAAgbAK8Ms+rGeWcSEwAgGTMqp11eB3H43gkOyKQEkJ6F7nSunw636n\ntTreaZzlXlliQQABBBAIuQABUshPMMNDYDgCHc/0qFRb+vJR1WHlqnxv5nQZjiX7lKbAjkkZ\nnEuDvbeMufqKcx/bJ7gtDHmZ9l6GZspCmPilFYYfUMaAwBgIECCNATpNIlDsAq1PDLh6FI6p\nvYudnf4VmYC9ZNpPlVF/9Lul9bjyyuob/HIIMu47weSFWe4/+N4Qpj4Z39khOE0MAQEECizA\ntysFBqc5BIpdwJ3Wu+sF92+lHUuszlI1R1Z4RdYIREyg/yKlYk0yc3rZzoF/2J6z5g576fQH\nQwJRI9OaVzz02jbV2ZcKyZB2DOO0A8b1lses7fPeh2pgDAYBBPIuQICUd2IaQKC0BAZdPTqh\nWukYr9UprbNIb0dLwE7OeNqes/abylKX+ce0YrdccPyqhttXz+zzt5V4pqW7T7X3pW+rLfHh\nbO++Y4LTzIRhRIwBAQQKJcAtdoWSph0ESkDA6XVUW5PMXuct8hui/vhQvUvVGxlrBLIX6Old\nKO9Geimww1v2Oyz+lUCZLAIIIIBAiAQIkEJ0MhkKAiMVaGvuVk6PPJGwc6k9ulLF62JekTUC\nkRSwfzmzUwKkLwQHb5Sed+WsJw8ObiOPAAIIIBAOAQKkcJxHRoHAqAgMur2OyRlGxZWDlL7A\nwqVT75EH/u/zRqK1ro7HYv/rlVkjgAACCIRHgAApPOeSkSAwIoGuF3tV7+v9/jHcab2rDin3\ny2QQiLqATGHwBWWMfw+qBEnnzp/dfE7UXRg/AgggEDYBAqSwnVHGg8AwBQZdPTqpephHYjcE\nwimwONnwgkxjcHVwdDqm/vdLiUd5UC+IQh4BBBAocQECpBI/gXQfgdEQ6G9Pqfanu/1D6XKt\n6hoq/TIZBBDYIWCpdV+Xq0jrPA+t9CH1pmauV2aNAAIIIFD6AgRIpX8OGQECIxbYtlruGgq8\nAqV+WpWyKvj1MGJYDhA6ATvZ2CvTR1+cMTCtL52baD4yYxsFBBBAAIGSFeAvoJI9dXQcgdER\nMPLX3rZVnRkHqz+RO4YyQCggEBBYuLThAeWYn3mbtFblMtfjLV6ZNQIIIIBAaQsQIJX2+aP3\nCIxYoGNdj+pvTb8g0p2YoWJy2YiPywEQCLNAr9P3FZkQf5s3Rpmw4XQ7sfY/vDJrBBBAAIHS\nFSBAKt1zR88RGBWBQZMzMLX3qLhykHALXLN85nqtzLzgKCVgusE+87H64DbyCCCAAAKlJ0CA\nVHrnjB4jMGoCvZv7Vddzvf7xYrWWqnlLhV8mgwACuxZ4yqy7WSZsWOPVkFvtpqi66sVemTUC\nCCCAQGkKRDFAmiCn6hBJ7gO1+0uqkcSCQCQFBl49qp9ZpXRMR9KCQSOQq0Ay2ZhKOepCZeR/\n3mLMRfNmN033iqwRQAABBEpPICoBkvsfqzskbZTUIukFSc9IekVSu6TnJN0maW9JLAhEQsDp\nM6ptjf/OS6Xkt8G4mbz7KBInn0GOmsCiZQ2PS3T0Pf+AWsdilr5VynzT4KOQQQABBEpLIAoB\n0nw5JU9K+rQk96/BP0v6laRfSPqNpCckuX8VXiDp75J4yFYQWMIv0L62Sznd6S++a46qUPF6\nmYuLBQEEchLQqv1yuYi0yd9J65Pmz2ly/5vCggACCCBQggJhD5ASck4WSHIDoeMlHSzpFEn/\nJunfJZ0p6SRJ+0l6p6QXJN0pya3DgkCoBVr/kjm19zgmZwj1+WZw+ROwk6e0yHT5Xw22YGnr\n6kvO/DUP9AVRyCOAAAIlIhD2AOk8OQ/PS3LX7lWkXS3u1+h/knSGpDZJH5PEgkBoBV5/rlv3\nvNbvj69sr5iqPoy/5XwQMgjkKLBw6bQfGWMe9nfTalJ97X57+WUyCCCAAAIlIxD2AGmqnAn3\nlrqeLM/IFqm3VpI7eQMLAqEVaL6/JR4cHFePghrkERiWgNH95tNyq91r7t7GOD+6Ojnt1WEd\niZ0QQAABBMZUIOwB0nrRdW+ty/atl+4Md25Q5U7gwIJAKAU2vdZb/c+/tPkPG+kyreqmVYVy\nrAwKgUIK2CumPavNukOV6d53QXLaJwvZNm0hgAACCIyeQMa3yKN32KI50o+lJz+VtEzS1ZIe\nlzTU4s429HZJ35DkTthwtyQWBEIp8ODSDSf29zvuz/z2pa6hUsUqw/5diTda1gjkV8BONvZK\nCxvy2wpHRwABBBDIp0DYA6S7BG+ypMWSzpHk3u7wiqTNkrZJqpc0UZI7ecO+ktyHMr4i6RFJ\nLAiETsBWtvVcU/vJwYFxe11QgzwCoytwxbmP7VNeXv0Zo81pMvH3ZG30ZqOdh+RLijuuXj7j\nxdFtjaMhgAACCIyGQNi/NnYnX7hR0nGSfi7J/dbcnbXuLEnuLHbu2r2lrkPSDZIOk/RtSSwI\nhFLASXzgzO6O1CRvcJUHlamKKdnegertxRoBBLIRsOc0f6y8suo5ecfYIq316VrpY+W/Qu/U\nyppbFouvm59o/q9sjkMdBBBAAIHCCoQ9QPI03ZnsPiTJnXxhnKSDJB0habykGklvlnSppJcl\nsSAQWgF5h+VFwcFx9SioQR6B0ROYn2j6qLL0j+V7Ofe/MYMXrSosrb8l70ty71pgQQABBBAo\nIoGoBEhBcvfhdDe5Y6+VNPR/vOQDFgTCJDA30XyoXEJ9vzemWI2lao+u9IqsEUBglATs85sn\ny1WiW7I5nGXpa+3E6sOzqUsdBBBAAIHCCEQlQJounHdI2iipRZL7Qlh3pjr3eaR2Sc9Juk3S\n3pJYEAilQFypC2Vg/r/5+uOrlI67d52yIIDAaAo4MfVprbd/AZfFYXWZ0fGLs6hIFQQQQACB\nAgnI30yhX+bLCBfsHOVLsnbfi+QGSW5g5N5u507S4N5yd4Gk2ZK+IMmd3IEFgdAIXHLmryuM\nVp/0wiG5tcfUz6z2iqEZJwNBoBgE5Hmjd+XSD23UO3OpT10EEEAAgfwKhD1ASgifGxz9RtKV\nkp6UNNTi/qH4DknuRA13SvqXpEclsSAQCoFJNft/UJ6F2MsbzMHTapzY+Jh7qykLAgiMsoBW\nRu5GyOn7B3e2VRYEEEAAgSIRCHuAdJ44uxM0uOue3Zi7s939SdIZkl6U9DFJIwmQqmV/93am\ncknZLDOzqUQdBIYrIFePLg7+udbwnon9f1O9BEjDBWU/BHYjYLTeHPz3tpuqOz7SetMe61AB\nAQQQQKBgAmEPkKaKpHtL3e6CoyD2FimsleTOdjeSxZ0d7xxJ2QZIfHs4Em323a2APat5htL6\nRK9SVW1s04HHVtf87UX3fZYsCCAw2gJGOX+SSRrek8Nx3S/oWBBAAAEEikQg7AHSenE+XpL7\nope+LMwnSB03qHInbBjJ8prs/K4cDvAZqXt7DvWpikDWAsbSGVeP3jy97lF5RuK9WR+Aiggg\nkJOA1e1831To/5F/Z+7dBLtfjEn19/ffuvtKfIoAAgggUEgBq5CNjUFbP5Y2j5K0TJL7gthd\nLe7dEO4zSO6zSu5/0O6WxIJAyQv8z9lrJ8h8DB/yB2JM1zsb91nll8kggMCoC9j3znjNGPPl\nrA5stL14xfF/z6oulRBAAAEECiIQ9itId4mie/vaYknuLW+vSnpF0mZJ2yTVS3JnsTtY0r6S\n+iW5L+17RBILAiUvUFntfFJpq8obiDH6ZxMnl3dt6XF/1FkQQCBfAguXTrvNntMck9tbvynz\nNVQMbEcCqH55+NVeuLTh6oGfUUYAAQQQGFuBsF9BcidfuFHScZJ+Lsm9UuReSTpL0r/vXLu3\n1HVIukHSYZK+LYkFgTAIyM+7/lxwII5WtwTL5BFAIH8C9tKGW/pS/UcqR10nAdETRpl/KaNW\ny/pbKaWOXZgkOMqfPkdGAAEEhi8Q9itInow7k513m5F71ch9/1GlpI2SWiWxIBA6gfmzm86Q\nb6/f7A/MmMcXJRtWL1TmNH8bGQQQyKvA1ctnvCgN/E9eG+HgCCCAAAKjKhCVACmI5t5a5yYW\nBEItoC19UcYADVePMjwoIIAAAggggAACQwhEMUAagoFNCIRLwE6sOkhGdLY/KiPP3W1qWeKX\nySCAwJgLXJZYNa7SlC2UW2EnprRZvDjZsG7MO0UHEEAAAQRU2J9B4hQjEE0BXfY5ub3OfxGs\n0c737QdP644mBqNGoDgFqlTZtXKl9wvaUh+RbytX2okl2b47rzgHRK8QQACBkAiE/QrSZ+Q8\nuc8c5bo8Kju4L5hlQaDkBNw/soxRn9bulCQ7FkenrNu8AmsEECgSAb19ltUdndH6UEcddbEU\n3ImFWBBAAAEExlAg7AGS+wzGtGH42rIPAdIw4NilGASOmiPBkTu9/Y7FyDfTy6a6E5WwIIBA\nMQmk9HdVTM32uiS3dFx26RnNt3/j/gZ3ZlUWBBBAAIExEgh7gHSmuC6X9FZJ90j6gaRsFu4D\nz0aJOsUpoI18MZC+fKScFFN7F+eZolcRF5AvLn53VWPzn7TSp+6k2Kd6/PYXzC6KOA3DRwAB\nBMZUIOwB0gbRdac0/qMkN1haIGmNJBYEQilgz14t7/XSb/MHZ8wLatk9v/HLZBBAoKgEnH7n\nilg89rDXKW30l//n7LXf+dqvpm7xtrFGAAEEECisQBQmaegR0k/vZL2psLy0hkBhBYxV5j7D\n4C+OUrfaypYVCwIIFKPAouXTH5GXyN7r9U1rPb6y2lzulVkjgAACCBReIAoBkqv6lKQrJLkT\nNhwniQWB0AnYZz5Wr7X5sD8wo3qs7r4f+mUyCCBQlAJaOVcpI//buUjmYjvxxBSvzBoBBBBA\noLACUQmQXNUbJMntR+qvboEFgdAJ1FV9Qm6vq/HGZbT5hf3LmZu8MmsEEChOATs5vUkeG7zL\n651cRao2puIqr8waAQQQQKCwAlEKkAorS2sIFFjAGH1hsEltzM3BMnkEEChegf5UaoHcatfv\n91DrT9nnrTnEL5NBAAEEECiYAAFSwahpCIH8CdiJ5tNlau+jvBbkbp0n7eS0J7wyawQQKG6B\nxcum/0OuHH3f66X8ey438Riz2XkgrBFAAIECChAgFRCbphDIl4D7zELw2Fpx9SjoQR6BkhDo\nN4vlSSR3YqHti7bUf8w9f/VbvDJrBBBAAIHCCBAgFcaZVhDIm8CViab95eDnBhrY0mo6fxYo\nk0UAgRIQsJc3vCK32QVnW7Xi8fi1JdB1uogAAgiESoDOgE38AABAAElEQVQAKVSnk8FEUSCu\nrAvk1hz/nWbGqB/emDylK4oWjBmBUhfo1anr5d9wuz8OrT9gz35ypl8mgwACCCCQdwECpLwT\n0wAC+ROw3/WHuFbqM34L8vBRykl91y+TQQCBkhK4NjnjDZn2++sZnbbi12SUKSCAAAII5FWA\nACmvvBwcgTwLTJ4wS6YH3tdrRZ5F+j/3YW+vzBoBBEpQoL37W3IVqcXvuVbvnT+n+d1+mQwC\nCCCAQF4FCJDyysvBEcizgLEuCrbA5AxBDfIIlKaAvfLkbXIV6epg7y2tmdEuCEIeAQQQyKMA\nAVIecTk0AvkUsBNPHi1Xj97ptSHfOL/0lFr3K6/MGgEESlegVXXeKnfMvuaPQKu32rPXnOeX\nySCAAAII5E2AAClvtBwYgfwKGB3LnNpbm9uSycZUflvl6AggUAgBd6IVo7QdbMtYsQVSlscO\nWRBAAAEE8ilAgJRPXY6NQJ4E7MQfarXRH/UOL1ePelWfusMrs0YAgdIX2PBc74/k3/bz3kjk\n5bFT7camD3tl1ggggAAC+REgQMqPK0dFIK8Cjpr4UfkeuS7diFlqr2jYmC6TQwCBUhe4ffXM\nPqPN3OA4jLGucmevDG4jjwACCCAwugIESKPrydEQKIiAfJOcMTmDk3JuKUjDNIIAAgUVsJas\n+IU8i/Q3r1H5t3+4s/fE9NT+3gesEUAAAQRGTYBvoUaNkgMhUBgBe9baU6WlY73W5BactYuW\nT3/EK7NGIBsBY8w0x5jfS90w/negR2Z9mykvUH4xG4tirmMr27Gd8y5Xlv6l10/5ZvNKuYr0\nQ/vB07q9bawRQAABBEZPIIz/YRw9HY6EQDEKxIxcPUo/py25m4uxm/Sp6AX2lQCi/qFXW2NF\n39McOhiTSyxv26/evf10L0klHyC5Q7eXTrvPTjQ/rrQ+yS3Len+5inSJ5DJfKLv9Q/4PAQQQ\nQGCkAgRIIxVkfwQKKGAnnpgisdEsr0l5Mey2jlZzp1dmjUAuAvLzY15u781ll6KvG09/d1D0\nfc2xg1dI/Qe8fSQO/OpXz334u9ff+/Y2bxtrBBBAAIHREeAZpNFx5CgIFETA0eXy7IEu8xtz\nzI++cX9Dh18mgwACoRSwkw2/l9tp7/cGp5Xeq7q8/r+9MmsEEEAAgdETIEAaPUuOhEBeBRKJ\nJTGZ2vuCYCPa9N0aLJNHAIHwCmjlzMsYnVZfvPz8xydlbKOAAAIIIDBiAQKkERNyAAQKI3CM\nOeID8szIAV5r8pD97+1lM5/xyqwRQCDcAnZy2hNyV+Qyf5Qy1X95WWXGNOD+Z2QQQAABBIYt\nQIA0bDp2RKDAAlpnTO1tHMXU3gU+BTSHwFgLpFLmKumDk+6H/tyViab902VyCCCAAAIjFSBA\nGqkg+yNQAIG5ieYj5dmj0/2mjHnV2txyj18mgwACkRBYtGzaU8ox/88brMxJURnX2vbKrBFA\nAAEERi5AgDRyQ46AQN4FYkZeDCtPZacbMrfLO1D602VyCCAQGQGjF8qtdn3+eI36hJ1Yfbhf\nJoMAAgggMCIBAqQR8bEzAvkXsM9ZVS1T+n7ca0mePervTfV/zyuzRgCBaAnYy6Y+b4y+zRu1\nPJsor+yIL/bKrBFAAAEERiZAgDQyP/ZGIO8CTlX5h+XFkOP8hrRefs3ymev9MhkEEIicQF+q\n9xplTFd64LrRnr16arpMDgEEEEBguAIESMOVYz8ECiSgjcmYnMEx/UzOUCB7mkGgWAXcL0mM\n0t/2+ye34JpY2bV+mQwCCCCAwLAFCJCGTceOCORfwJ6z5hS5fWaa15K8KPLpRckZf/TKrBFA\nILoCWrV/Xa4itXoC8pDiWfMST77VK7NGAAEEEBieAAHS8NzYC4HCCFixjKtHcjXp5sI0TCsI\nIFDsAnbylBaZuuX6YD8tFb8mWCaPAAIIIJC7AAFS7mbsgUBBBC5PPLm3MmqO15hcPWrv7G3z\np/f1trNGAIEIC5iW/5WrSG94AjKhy7vmz256n1dmjQACCCCQuwABUu5m7IFAQQTKTOw/5dvh\nCq8xrcz/u/7et7d5ZdYIIICAnTyt3TFmUVBCWxYz2gVByCOAAAI5ChAg5QhGdQQKIWAr27K0\n+mxGW/2KyRkyQCgggIArsKXjtdtl9bKnIVeRZtqJZv/qs7edNQIIIIBAdgIESNk5UQuBggo4\ns88/W6b2Pthr1CjzJ3tFw9+8MmsEEEDAE7hp5Vk9juNc5ZXdtcxwt8D9oiW4jTwCCCCAQHYC\n/PLMzolaCBRUwIqpi4MNysthuXoUBCGPAAIZAn/Xz/5Evkh51tsoV5GOduac579g2tvOGgEE\nEEBgzwIESHs2ogYCBRWYe96qNymjz/AalckZNmx4vn+5V2aNAAIIDBRIJhtT2qgrg9u1pefb\niSXlwW3kEUAAAQT2LECAtGcjaiBQUIF4edmFMjmDvNJkxyJ/9Hzv9tUz+7wyawQQQGAoATvZ\nsExmtFvjfSa/Rg5xzBGZzzJ6H7JGAAEEENilAAHSLmn4AIHCC3wp8WiVMfqTfsvGpJRj3Aew\nWRBAAIE9CRjHMZcHK2ltXWGfs6o6uI08AggggMDuBQiQdu/DpwgUVKDOVP+7PDswMd2ovtde\n3vBKukwOAQQQ2LXAwmXTfivPLD7s1ZDfJ1NUVdkXvTJrBBBAAIE9CxAg7dmIGggUTEC+7b0o\n2Ji83+TmYJk8AgggsCcBx6grMuvoS+3z1ozP3EYJAQQQQGBXAgRIu5JhOwIFFrATTSe67y/x\nmzVm3cKlDb/3y2QQQACBLAQWLW14SOb5/lWg6gRTFrssUCaLAAIIILAbAQKk3eDwEQIFFTA6\n8+qRUrdK+6agfaAxBBAIhUDKcebJbw//94fW5hL7/ObJoRgcg0AAAQTyLECAlGdgDo9ANgKX\nn//4JGPpD3p15RmCzh7V9yOvzBoBBBDIRWDRsmkym51Zkt5H15i4npcuk0MAAQQQ2JUAAdKu\nZNiOQAEFyuKVn5J5vSu9JmVq7zuvS85s9cqsEUAAgVwF+pW6Sqb9TgX2u+DKWU8eHCiTRQAB\nBBAYQoAAaQgUNiFQYAF59Eh/LqNN7dySUaaAAAII5CiwONmwzmj1Q283+UVTXmbFFnhl1ggg\ngAACQwsQIA3twlYECiYwf87a98sfLod5DRqjHrWT05u8MmsEEEBguALa9C2SJ5F6/P21+og9\ne9VRfpkMAggggMAgAQKkQSRsQKCwAvLwdMbkDHJHDFePCnsKaA2B0ArYyZkvGW3cCV92LFrH\nVKxssVdkjQACCCAwWIAAabAJWxAomIC8m+QQrfVZfoPGvLGlY/1Sv0wGAQQQGKGA7lPXyoQN\nHf5hjJ5lz2qe4ZfJIIAAAghkCBAgZXBQQKDAAvGY++xR+t+hVnfctPKs9O0wBe4OzSGAQPgE\n7BUNG5Wjv+mPTB56NDEtQRMLAggggMBQAuk/zIb6lG0IIJA3gUvO/HWFscynAw04ff2p2wJl\nsggggMCoCHTp3hvkQFu8g8lzj2fYs9ae6pVZI4AAAgikBQiQ0hbkECiowITa/Rrli9y90o2a\nX129fMaL6TI5BBBAYHQE3NcGOMZkXjWKm2tG5+gcBQEEEAiXAAFSuM4noykhAXn2KGNyBidl\nbi6h7tNVBBAoMQGru+9mmSVzQ7rb+m3fu/wf706XySGAAAIIuAIESPwcIDAGAvNmN02Xq0cn\nB5p+buGyafcHymQRQACBURWwfzmz0yizMHjQ11/qvtRI1MSCAAIIIJAWIEBKW5BDoGACMUtf\nHGzMcRx3Gl7+SgmikEcAgVEX2PB83x3KmBe8A6f61TF/e7TVK7JGAAEEEBABAiR+DBAosIBM\n7T1eIqEP+c0a02Xpzh/6ZTIIIIBAngRuXz2zT+awmx88/IPJ15VJ8f1M0IQ8AghEW4AAKdrn\nn9GPhUDc+oQ8f1TtN631z+3kKS1+mQwCCCCQT4Eld98ld9U97TXRsr5XbV7d6RVZI4AAApEX\nIECK/I8AAAUW0MZSF2a0meq/JaNMAQEEEMijgK1smdBOXRFs4vXftynTz1WkoAl5BBCIrgAB\nUnTPPSMfA4H5iTXvkckZjgg0/Rd72YxVgTJZBBBAIO8CC5dOvUca+YvXUF+ro7Y+zlUkz4M1\nAghEW4AAKdrnn9EXWEDrWObU3oqpvQt8CmgOAQR2CjiOuTyIseWhduX0OMFN5BFAAIFIChAg\nRfK0M+ixELjyA08cqI05x2/bqM3WxpZf+GUyCCCAQAEFFi5teCBerh/1mnRkEvCtj3IVyfNg\njQAC0RWIR3fojByBwgqUlVd8VsklJK9VeffIDxc8eFq3V2aNAAKFFZB/g/XS4rWSKgrbckFa\n65dWbJkQJvBi2MHtHnx0zXXPNbW7t9ttX7Y82qHGnVStYtV8f+qZsEYAgegJECBF75wz4jET\n0J/ym5a3NWqj3XcfsSCAwNgJvFmavuilth6522zsOpGPlg+p3x7zuYHPyt0d/yOXH7rm51//\nl1q3qm17NdNjlHur3V7vc2NHFgQQQCCaAgRI0TzvjLrAAhccv6pM3j2yl1J6Z8vmN/ayhucL\n3A2aQwCBIQT+vH6bFbYJ3A6q37s/22tAp31wilq3WgKknUFiq0zWMP6tNSpe71/wHkKNTQgg\ngEB4BbL9/RleAUaGQAEE3JczyjfUV8otPe5tLy+nHPPfBWiWJhBAAIE9CuxzUKWa0FDl13N/\nS7U82O6XySCAAAJREyBAitoZZ7xjJrAw2fB1rdbV2EumHrxo2bSnxqwjNIwAAggMEJjynjql\nAn8RbHuyS/W1uN/nsCCAAALREwj8Ooze4BkxAoUWsJONvdJmyJ52KLQi7SGAwGgLVEyKq/rj\n01eRlMz2vfn3XEUabWeOhwACpSFAgFQa54lelqCAnVhSbp/5GE86l+C5o8sIRFFg4jtrlQ48\nmdz+127V83pfFCkYMwIIRFwg8Ksw4hIMH4FREPhS4tGqOlXzefnm4eMyIcPRqk5pu3HtFmXM\nff39/dcuXnH830ehGQ6BAAIIjLqAOynDuJNq1NZHOnYcW651t/yuXe374Qmj3hYHRAABBIpZ\ngCtIxXx26FtJCdjnrTmkXtWusrS+Xt53dIxMWOdNWTdByh+Nl8Wb5yeaP11Sg6KzCCAQKYEJ\n76hRusL71aVUx7oe1f2ye2cwCwIIIBAdAQKk6JxrRppHATvxh1pTFluptTp6183oMkvp782f\n3XzOruvwCQIIIDB2Au4LYie8rSajA5vlKhILAgggECUBAqQonW3Gmj8BPfFSCY6O2mMDclVJ\nW/o77vNJe6xLBQQQQGAMBMa/tVpZ1emrSF0v9KrO53rGoCc0iQACCIyNAAHS2LjTaugE9Key\nHZIEUgc56s3vzbY+9RBAAIFCClgVlpp4am1Gk1xFyuCggAACIRcgQAr5CWZ4+Re44tzH9pFW\nDsypJWPNzKk+lRFAAIECCtSfUK1i9ek/EXpe7VPtT3cXsAc0hQACCIydQPq339j1gZYRKGmB\n8ooyecNibotlyfx2LAgggECRClhlWk08LfMqUssD7co4vMatSE8Z3UIAgVEUIEAaRUwOFU2B\n9tb4epnGO5XL6OVvjJdzqU9dBBBAoNAC9dOqVNnEmN9s7xv9qm0tV5F8EDIIIBBaAQKk0J5a\nBlYogW/c39BhlH4ol/bkJfW/yaU+dRFAAIFCC+iYXEV694CrSH+Qq0gpriIV+lzQHgIIFFaA\nAKmw3rQWUgGjUtdkPzSzbHGyYV329amJAAIIjI1A7bGVqnyf9Dvl+7ek1LZVXWPTGVpFAAEE\nCiRAgFQgaJoJt8DC5PT/M8q5PotRPqe6+j6XRT2qIIAAAmMuoGXazUnvGXAV6Y/tyunjKtKY\nnxw6gAACeRMgQMobLQeOmsCCJdMuU475kjFqyLcqyp8Tv1Z95hT7lzM3Rc2G8SKAQOkK1BxZ\nqSoPLPMHkGp3VOtjHX6ZDAIIIBA2gfR187CNjPEgMAYC9tKGb9nnrPqpqiyfpZSZpoySNy6q\nf6lU6r4Fy2asGoMu0SQCCCAwYoFJ76lTr/6wxT/Oloc71PapwCv5ntVHIYMAAqERIEAKzalk\nIMUisPMK0e3F0h/6gQACCIxUoOrQclV9eLnq/Gfv9kM5XUZtfaRDTXo3bywYqS37I4BA8Qnw\n1U/xnRN6hAACCCCAQNEJTJSrSMFl6587VapD5uRkQQABBEImwBWkkJ1QhjM2Apef//ikinjV\n7FQq9dSi5dMfGZte0CoCCCCQP4HK/cpUzdEVquPpnu2NmF6jWmTChr3Pqs9foxwZAQQQGAMB\nriCNATpNhkvATiwpL49XPay0ui0Wjz1sz2n6t3CNkNEggAACOwS231Kn0xqtf+lUfa05vSc7\nvTM5BBBAoEgFCJCK9MTQrdIRcNQR58tMuEd5PZaXxr7Ty7NGAAEEwiRQvndc1TVUpYcksVGL\nvDyWBQEEEAiTAAFSmM4mYxkTAUvrzwYb1sr8MVgmjwACCIRJYOLp8l6kWHpEbWu6VO+m/vQG\ncggggECJCxAglfgJpPtjK2AnVh+ujH6X1wtjzCtP6WdXemXWCCCAQNgEysbH1LiZ1elhyUve\nWh7gKlIahBwCCJS6AAFSqZ9B+j+2Ajr+OXn2yL8jX64efS+ZbOSG/LE9K7SOAAJ5Fpjwzhql\ny/xffar9qW7Vs74vz61yeAQQQKAwAgRIhXGmlRAKuJMzyBenH/eHZkxKpfQP/DIZBBBAIKQC\n8dqYGv/WwFUkGefm37WFdLQMCwEEoiZAgBS1M854R1HgqDly8WivwAHvs5c3vBIok0UAAQRC\nKzD+bTXKqkxfRer8R6/qenHHi2RDO2gGhgACkRAgQIrEaWaQ+RAw2mRMzuAYfVs+2uGYCCCA\nQDEKxKosNf7tNRld4ypSBgcFBBAoUQECpBI9cXR7bAXmJpqPlKtHp3q9MEa9ZC1d/luvzBoB\nBBCIgsD4k6tVrCb9p0T3i32q49kdL5KNwvgZIwIIhFMg/VstnONjVAjkRSCm1eeCBzbK3G4r\n2wluI48AAgiEXcAqt5Q7YUNwaXmgTcmMnsFN5BFAAIGSEoiXVG/pLAIjFJD/aB8ohzh9JIfp\nbO0r++ZF6/4z1b/jDwB5SWzqM4vf3LZgiUlP2DCSBoa/76ta698Nf3f2RAABBHIXcKf83vpI\nh+pv3fEdUc/6ftXxVI+qPbYy94OxBwIIIFAEAgRIRXAS6EJBBS5OGXNpb8oMez7ap1a3WxIc\nlXu9Pvz4ejXp0IrruvrH7gJS3NKWJPfp6DqvX6wRQACBQgjouFbuy2M3rtjmN7dZriLVHF2h\ntJWexMH/kAwCCCBQ5AIESEV+gujeqAtYG7v6+3//8tZhf7X5ysrNGZ3qODoWW/7c5sB75TM+\nLkhh/5pyder+9bx/qSDaNIIAAgMF6hqq1JaHOlTfph2/hvo2p1RbU5eqn5E5FfjA/SgjgAAC\nxSjAM0jFeFboU9EK9G7sV90vpS8+xeWN8lVv8i8mFW2/6RgCCCCQTwH3StGkd2dewG75Q7sy\nO29FzmfbHBsBBBAYbQECpNEW5XihFmj9S2fG+MadUKXkuZ+MbRQQQACBKAq4t9RV7Je+McV9\nJmng78woujBmBBAoPQECpNI7Z/R4jAScPqPamrvSrcu/nrrpVekyOQQQQCDCAu6XRZPek3kV\nqXVV5pdKEeZh6AggUEICBEgldLLo6tgKtP+1Sznd6alra99SqeK1Y/ro0diC0DoCCCAwQKD6\n8ApVdWj6tuNYJX9mDCCiiAACJSCQvhZeAp2liwiMpUDrqsDVI+lIvdxex4IAAgggkCmwz+xx\natP98i4kef5o4BWlzJqUEEAAgeIUIEAqzvNCr4pMoGdDn+p5JT05Q9lEmZwh8C1pkXWX7iCA\nAAJjJhCvj6kpc8aPWfs0jAACCIxUgGvfIxVk/0gIDHzQuF5ejMjkDJE49QwSAQQQQAABBCIm\nwBWkiJ1whpu7gNMrkzOs7U7vKI8d1TM5Q9qDHAIIILAbgVSXo7at7lKdz/WoVJujrCqtKg8s\nl3ckVanyvfgzZDd0fIQAAmMkwG+mMYKn2dIRaJPJGUxPYHKGoytVrIaLr6VzBukpAgiMlUD7\nM91q4/LWjAlu3L50v9intj7aoSacWqMmnlbLFfmxOkG0iwACQwoQIA3JwkYE0gLbBr77SG6v\nY0EAAQQQ2L1Ax7M9asPPtiqV/n4pcwdHqS0PdshkDkrtdUbm9OCZFSkhgAAChRXga/DCetNa\niQn0rJfJGV6T/3rvXMomMTmDZ8EaAQQQ2JWA0+uojXe37jo4Cuy49eEO1R2YBCfwEVkEEEBg\nTAQIkMaEnUZLRWDg5AzjTuDqUamcO/qJAAJjJ9D+126VapdLRFkuWx/ryLIm1RBAAIH8CxAg\n5d+YFkpUwOlxBk3OUDeNdx+V6Omk2wggUECBzhd6c2qtK8f6OR2cyggggECOAgRIOYJRPToC\n7sx1Rmaw85baY2Ryhmr+yXgerBFAAIFdCaQ6sr965B4j1/q7apftCCCAwGgI8NfeaChyjFAK\nbFvVmTEubq/L4KCAAAII7FIg1y+Tcq2/y4b5AAEEEBgFAQKkUUDkEOETcB8Y7lkfmJxhb5mc\n4eDy8A2UESGAAAJ5EKg6JLffl7nWz0OXOSQCCCDgCxAg+RRkEEgLtHL1KI1BDgEEEMhRoO64\nSmVV66z3GncSE+BkjUVFBBDIuwABUt6JaaDUBJxuR7kzMHmLlreF1TUwOYPnwRoBBBDYk4BV\naanJ54zbU7Xtn7vBEVfos6KiEgIIFEiAAKlA0DRTOgLbmruU6QtMznBslYpV8U+ldM4gPUUA\ngWIQcCe22WfOOKXLdn0lafwp1WqvM3lJbDGcL/qAAAJpAflunAUBBIIC21Z1BYtq3AlcPcoA\noYAAAghkKVA3tUpVHVqu3HfKdT3Xq/rbHGVValV5YJkaN7NaVexbluWRqIYAAggUToAAqXDW\ntFQCAl0v9are19OTM5RPjst/yHN72LgEhkkXEUAAgYIJxOtiatLpcpXo9II1SUMIIIDAiAS4\nb2hEfOwcNgGm9g7bGWU8CCBQCgL97Sm5upQqha7SRwQQiIAAV5AicJIZYnYCqS6ZnOFvgckZ\n5M6P2obK7HamFgIIIIDAsATa5LnP15e3bt93r/fVqfGn1AzrOOyEAAIIjJYAV5BGS5LjlLxA\nW5NMzpC+u07VHieTM8hMTCwIIIAAAvkT2PpYh1LuvDiSNt3fpnpe78tfYxwZAQQQyEKAv/6y\nQKJKNAS2rR4wOYM8QMyCAAIIIJBfgYyJGhylNt6zTRmTnkk0v61zdAQQQGCwAAHSYBO2RFCg\n60WZnGFj+vJR+RSZnOEAZleK4I8CQ0YAgQILTDy9dvvMdl6zPa/0qdYnOr0iawQQQKDgAgRI\nBSenwWIUcKegDS7jTuDqUdCDPAIIIJAvgXhtTO31/sx3IbX8rp1JG/IFznERQGCPAgRIeySi\nQtgFUp2O6ng6MDlDuVZ1U5mcIeznnfEhgEDxCNRNr1KVB6ev2js9Rr1x37bi6SA9QQCBSAkQ\nIEXqdDPYoQQGTs7gBkdWBf80hrJiGwIIIJAPAa21mnzuOKVi/7+9OwGQoywTPv5UH3MfyWQm\nAUIg3FEgBwQ5BEGEIDchmSjiDaK7ih94u0LSBGVdL9TVdRV01Q9hyYQA4QY/QYUImGsCct+G\nEHJO5j66u77nTaZ6qpuZpDvpnu6q+r/wpOvqqvf5VU93v11Vbw2tvevZPul6bujHq6E5DCGA\nAAKFFeBbYGF9WbsHBLYtTz+9ro7OGTyw16giAgj4TaCsKSINJ9ekpWWOIiX7tOcGCgIIIDCK\nAjSQRhGbTZWeQM+r/TKwaejmhOX7aOcM+wyd5lF6NaZGCCCAgH8Fxp5YLdHGocNI8fakbNbr\nkSgIIIDAaArQQBpNbbZVcgKZR4/onKHkdhEVQgCBAAlYkcFT7Vw5mx7terVnOwoCCCAwWgI0\nkEZLmu2UnECiKymdGZ0z1BxJ5wwlt6OoEAIIBEqgcnKZ1M2sHMpZb4m0Yek2sRPcG2kIhSEE\nECikAA2kQuqy7pIWaF+lN4YdOrtOaqdr5wxl/EmU9E6jcgggEAiBcafXSrh66P24f31c2pZ1\nBSJ3kkQAgeILDL37FL8u1ACBURMwd2lvX5HeOUM9nTOMmj8bQgABBHYmEK4MSePZGfdGeqRT\nBrYO3dB7Z89nHgIIILAnAjSQ9kSP53pWoOcV7Zxh89Dho/J9o1K+F50zeHaHUnEEEPCdQO0R\nlVJ1SFkqL1svQ9p4F/dGSoEwgAACBROggVQwWlZcygLty/X0OlepP8Z1vrtrOoMIIIAAAsUT\naDq3XqyolapA90v90tGa/v6dmskAAgggkCcBGkh5gmQ13hHo2ZaQTtfNB0PlltQcTgPJO3uQ\nmiKAQFAEomPCMu4D6fdG2nR/hyS6uTdSUF4D5IlAMQQixdgo20SgmALP/bUtnN45Q6V2zjD0\nC2Ux68a2EUAAAQTSBeqPq5L21T1iOmowxfRAahpJEy6sT19wN8f0mlRL+8dbop3kTdjNVZTs\n0yyxk2HLusqyrEdKtpJUDIESFKCBVII7hSoVTiCpPzo+/2dtILlKWneyrukMIoAAAggUX8AK\n6b2RLqiXtb/cLDLY03eHNphqZ1RI1QHl+aignkcgF7y2rUe64/46MnXo2MqBcNiaqUiP5AOK\ndSAQFAEaSEHZ0+S5XWDlHzdPbt80kDpcVLGfds4wgc4ZeHkggAACpSxQsU9UxhxfpV19D/U+\nunFpu+z3+UYxN5fNR3lpW69s7vVXL3mTasvjFWGupsjH64N1BEuAv5pg7e/AZ7vq4a3T3Ah1\ndO3t5mAYAQQQKFmBhlNrJFI/9LXF9ES6Rbv+piCAAAL5Fhh6p8n3mlkfAiUmEGt+cq+3Xu05\n2KlWqMJ0zlDhjPKIAAIIIFDCAuZG3k3n1KXVcOtjXdK/wV9HfdISZAQBBIoiQAOpKOxstBgC\nSSm/RO8Pm3rN187Qzhlc3ccWo05sEwEEEEAge4Hqwyqk5gjXD1t6O7sNS7eJufk3BQEEEMiX\nQOrLYr5WyHoQKEWBmMRCliWXuutWz+l1bg6GEUAAAU8INJ5ZK+YMAKf0vjEg7X/n3kiOB48I\nILDnAjSQ9tyQNXhAIDn3wjMssSY7Va3YPyplTfRR4njwiAACCHhFIFKr90Y6ozatupv/2CHx\nDj2cREEAAQTyIEADKQ+IrKL0BUKW/Vl3LeuPqXKPMowAAggg4CGBuqMqxfRC6pRkry0b72l3\nRnlEAAEE9kiABtIe8fFkLwjEzlu5j9bzHKeuFdVhu+bdrnPYnRk8IoAAAgh4QkBvfCrjz9cb\nxbruatf1TJ90Pd/rifpTSQQQKG0BGkilvX+oXT4EykOXimWlPkYPPXFMIl/3zchH9VgHAggg\ngEDuAuY06bEnVac9cePd7ZLs99fNXtMSZAQBBEZFgAbSqDCzkWIJmM4ZxNIGkqtMObmeT0+X\nB4MIIICAVwUa3lcj0XGp378kvi0pm//IvZG8uj+pNwKlIkADqVT2BPUoiEByzuyzdcWTnJU3\nTix/fczeZfQH64DwiAACCHhYwJwNMP48PdXOVbY90S296wZcUxhEAAEEchOggZSbF0t7TCAU\nstI6ZzjyxDGtHkuB6iKAAAII7ESg8oAyMZ02pIr+BLbhjm2STPJbWMqEAQQQyEmABlJOXCzs\nJYFvnf+kHjmyP5iqs21vPP7sxhdT4wwggAACCPhCwHT7Ha4e+krTvz4uf79789C5d77IkiQQ\nQGC0BIbeTUZri2wHgVESiEYrPuPunEFs6zfR8hDXH42SP5tBAAEERksgXBmSxrPS74302O0b\nIy+t6mgcrTqwHQQQ8I8ADST/7EsycQk0Ny8Ki2V/OjXJFjse778hNc4AAggggICvBGqPrJSq\ng8tSOQ30J617f7Pu46kJDCCAAAJZCtBAyhKKxbwlcHjykHP16NFEV63/+O07Zr7sGmcQAQQQ\nQMBnAk3n1ok1dP9Y2bqhf9r8ea0X+SxN0kEAgQIL0EAqMDCrL46AHQqldc6gF+v+sjg1YasI\nIIAAAqMlEB0bkYZT00+103s9XP+Ns9eMHa06sB0EEPC+AA0k7+9DMsgQiF2warLeZX2WM9m2\nZf361waWOuM8IoAAAgj4V2DMcVVStlfEneCE8kr5gXsCwwgggMDOBGgg7UyHeZ4UsCOhz2jF\nh17btv2bX62YyU0xPLk3qTQCCCCQm4AV1nsjnV+vZ1lbqX6+LUs+FbtwzftyWxNLI4BAUAWG\nvkQGVYC8fSUQO+XhiH4qftqVVDJhyY2ucQYRQAABBHwuUDExKkfPakik0rS0256w/PLyM+8t\nT01jAAEEEBhBgAbSCDBM9qZAclzD+fpL4V5O7W3bfvDbLdNedcZ5RAABBBAIhsBJ88bHy8pD\nm51s9bNhSkPNvv/mjPOIAAIIjCRAA2kkGaZ7UiAUstI6Z7CSSTpn8OSepNIIIIDAngmUVYTk\nmFmNv89Yyzdic5ZPyZjGKAIIIJAmQAMpjYMRLwvE5qw5UOt/mpOD3vponWxuu9sZ5xEBBBBA\nIFgCp310wmrNuMXJWo8ilUko+isdt5xpPCKAAAKZAjSQMkUY966AJZfpR97Qh55t3Rh75P1x\n7yZEzRFAAAEE9lSgP97/f8S2t6XWY1knxZrXmM58KAgggMCwAjSQhmVhotcELjt6edS27E+5\n6p20pP/XrnEGEUAAAQQCKHDdkplvJW376+7U9QyD//i38x6f4J7GMAIIIOAIBLGBZG4WN1nj\nMI2JGtUaFI8L7HNQZLZ26TreSUM7Z7g31jLzDWecRwQQQACB4AosXDz9V3pPvGWOgH5ejIlW\nVP3UGecRAQQQcAsEpYE0Q5M2XT1v0NiiYXo1e05jrUanxssa5mL+Jg2KJwWsz7mrbdk2nTO4\nQRhGAAEEgi1gJ5PJy0Ts1D3x9HzsebE5q84KNgvZI4DAcAJBaCDN18RXalyi0aPxN417NG7V\nuF/jSY0qDX3jlGc1PqJB8ZDAVXNWHSK2dYpTZT16tPYf1gv3OeM8IoAAAgggcO1t0/8hSeu7\naRKh0H898Ou15jsABQEEEEgJ+L2B1KyZXqNhGkJHa+yvcYLGORof1jhT41iNfTRO1jBHlv6g\nYZaheEQgEg591t05gyX2DS0t84ZuEOiRPKgmAggggEBhBTZ3rf2OdtjwYmorlrX/k39qW5Aa\nZwABBBBQAb83kC7QHF/RMI/mKNJIxdYZf9GYpdGh8XENigcEzF3Rded9IlVV207o+RN0zpAC\nYQABBBBAwBH4z/vO6ksm7LT75SXjyc+/9Yo5wYSCAAII7BDwewNpqqZpTqnry3KHb9Xl1miY\nzhsoHhAYV7PvHO3Zu9FV1bu/0zL9Tdc4gwgggAACCKQEFi6Z/rCdlN+kJogVXvqrtWInzW+l\nFAQQQMD/R5De0p1sTq2LZrmzTQ93plFlOnCgeEBAu/ZO/yXQtuicwQP7jSoigAACxRSwrM6v\n6ql2G506rH+1V9Y/avpsoiCAAAL+byD9TnfyFI3bNMy1RiMV7cxGTtIw1yqZizXv0KCUuEBs\nzvIpevTofalq2vbrocVLHkiNM4AAAggggMAwArGWE7aIWFe4Z619oF0G2rh81W3CMAJBFfD7\nKXY36479ksYHNB7XMN16m0fTi90tg4/mFDxzSpa5BukojS9rPKZBKXEBOxxNP3okckNMYskS\nrzbVQwABBBAoAYFYy9Sb9d5IDzpVSQ7YsvGubc4ojwggEGCBiM9zNycUX69xp8Z3NMzRhswj\nSd06bZ3GDzV+ovFPDUqJC8ROebjCtq2Pa+9124t27R2PJwZc55SXeAJUDwEEEECg6AJWUv5F\nwvbTejSp0lSm+8V+6XiqR2qP3D5a9PpRAQQQKI6A3xtIjuorOnDR4EidPtZrVGhs0CjEz0X7\n6npv18j22qcGXZaSg0CyaWxzyBK329Lrlsx8K4dVsCgCCCCAQMAFYrdNfeU7Fz917cCAfZ1D\nsem+Dqk6uFzClX4/ycbJmEcEEMgUCEoDyZ13u46YMGV/DXNEyTSUntfIVz+fm3Rd5mhGmUY2\n5Xhd6EPZLMgyOwRClpV2ep1l27/EBgEEEEAAgVwFzvnaET9ddtOL1739eu/2pyY6k7L5wQ4Z\nf775LZWCAAJBFPB7A8l8iT5Z4xINd+PnSB03DZiZGk4xR5L+XeMHGnt6laZ5l/2FRrbFnOZH\nAylLravnrD5cT4d4r7O4nkP+yjWLpz/kjPOIAAIIIIBAtgJTp0pi3GUT5carXhYxJ+ZraV+h\np9lNr5TK/bP9nXPH8/gXAQT8IeD348fH6m4yp9a53+Em6fhfNUzjaLmGOfJwi4bp3/O7Gt/X\noJSwQDgcSj96JMkbtLqDH2slXHGqhgACCCBQkgITD66SCSfUpNVtw53bxI7z0ZKGwggCARHw\newNpuN1oGkHmuPnlGsdofE7jIxqHatyscaXGaRqUEhS4snlZpXbI8LGhqtkD/X29/zM0zhAC\nCCCAAAK5C0w6o07CdUNfiwY2JWTrX7tyXxHPQAABzwsMvRN4PpWsEzhBl3xS42cZzzCnuV2q\nsVnj1Ix5jJaIQL3UfMiyrDFOdWyxbr9u6XFvO+M8IoAAAgggsDsC4YqQNJ1j+nEaKlv+0in9\nm+JDExhCAIFACASxgWTe/Z4aYe+a65Se0zhihPlMLrKAbdnpp9fROUOR9wibRwABBPwjUDOl\nQqrfXT6UkF6RvGGpnmqnF7tSEEAgOAJBbCCt0N1rOmkYrozTiea0u7eGm8m04grE5qyYaol1\nnFML/bx6KdYy7WFnnEcEEEAAAQT2VKDprDqxygdvsqcr631tQNpXmt9PKQggEBSBoDSQzCl1\nf9D4ksYyDdNBw3ka7rKfjpjT7kyHDn92z2C4RARCEXO9WKpY1vauvflZLyXCAAIIIIDAngpE\n6sLSeHpt2mo2P9Ah8U49nERBAIFACPi9gXSv7kXnhq2mI4YfaizQMHm7r0E6W8df1viwhmlA\n3aJBKSGBr8xqrbYt62KnSnr0qF96Bn7rjPOIAAIIIIBAvgTqjqmUiklD93pP9tqy6d6OfK2e\n9SCAQIkL+L2BtFj9L9Q4UMNc2H+KxhUav9X4k4ZTwjpgjp//SuN0DY5KKEIplZo6uUhPeEhd\nPas3hr0tdtfMTaVUR+qCAAIIIOAPAe0MSJrO048c17ekzqd7pevFPn8kSBYIILBTAb/fKNad\nvLkRrDl1brjT58xNRs31RwMalBIU0KNHn9UGUqokrIS5fxUFAQQQQACBggiUT4jK2BOrZetf\nhrr63nhXu1R+oVFCZe5PpIJsnpUigEARBVy/jRSxFsXftDl6ROOo+Pth2BpcPWf1DP0xz1w3\ntqPY9vPXthw1XEPXWYJHBBBAAAEE9lhg7Mk1Em0wJ5nsKPG2hGx5mFPtHA8eEfCrAA0kv+5Z\nH+UVCoXSOmdIWhZHj3y0f0kFAQQQKFWBUHTwVDtXBduWdUvfW/ym6iJhEAHfCdBA8t0u9VdC\nseaHazQj08HG9qIXh/WG7M7fOeM8IoAAAgggUEiBqgPLpXZ6xdAm9INow516b6QklysPoTCE\ngL8EaCD5a3/6LpukPfZiPb3ONJJ2lKQsjrWcsMUZ5REBBBBAAIFCCzR+sE5CVUPXHfWti8u2\nx7sLvVnWjwACRRKggVQkeDabnUBIO2dwL2lZSU6vc4MwjAACCCBQcIFwVUiazkx1pLp9e5v/\n1CkDek0SBQEE/CdAA8l/+9Q3GV194apjxLJmOAnpvY+eibVMf9QZ5xEBBBBAAIHREqidVimV\nB5p7ye8odr8tG+9ud0Z5RAABHwnQQPLRzvRbKuFwKOPokc3RI7/tZPJBAAEEPCQwXu+NZLlu\nkNL9Qp+Y+yNREEDAXwI0kPy1P32TTezMx/VTSD6cSsi2e6Q/+fvUOAMIIIAAAgiMskC0ISIN\npwxdFms2v/Hedkn0Jke5JmwOAQQKKUADqZC6rHv3BaorPypiVTsrsMW+NXbHjDZnnEcEEEAA\nAQSKITDmvdVSNn7oMFKiMymbH+TeSMXYF2wTgUIJ0EAqlCzr3SMBO7NzhgT3PtojUJ6MAAII\nIJAXAStsyfjztcOGoU7tpH15j/S83p+X9bMSBBAovgANpOLvA2qQIRC7sPU47dp7amqybT8V\nWzLt8dQ4AwgggAACCBRRoGJSmdS/pyqtBhuW6r2R4twbKQ2FEQQ8KkADyaM7ztfVDsnn0vKz\n5b/TxhlBAAEEEECgyALjTquRcO3Q16iBjQnZ+mhXkWvF5hFAIB8CQ3/Z+Vgb60BgDwViF6wa\no6ctzHNWY9t2t3T13OSM84gAAggggEApCITK9d5I56TfG2nLnzulf1O8FKpHHRBAYA8EaCDt\nAR5PLYBAWejjeu+jSmfNeor3LbH7juNGEw4IjwgggAACJSNQ864KqX5X+VB99L6xG5fykTUE\nwhAC3hSggeTN/ebfWttymTu5RCLJvY/cIAwjgAACCJSUQNPZeleK8qEeG3pe65f2ld0lVUcq\ngwACuQnQQMrNi6ULKBBrXn2iHj06PLUJ21517ZIZf0+NM4AAAggggECJCUTqwmKuR3KXTQ90\nSKKLeyO5TRhGwEsCNJC8tLd8XlfbDn3WnWLStjl65AZhGAEEEECgJAXqj6mS8n2jqbole2zZ\neB+n2qVAGEDAYwI0kDy2w/xa3VjzsgYJyVwnP9uWzt7+zpudcR4RQAABBBAoVQErNHhvJNe3\nqs41vdL9Ul+pVpl6IYDATgRcf8o7WYpZCBRYIGnVfELP4K5wbebm7y09kVuTu0AYRAABBBAo\nXYHyCVEZ897qtApuuKtd7CT3RkpDYQQBDwjQQPLATgpCFa2MzhmsBKfXBWG/kyMCCCDgJ4GG\nU2okMjacSim+NSHxNu3ajoIAAp4SoIHkqd3lz8pe3bzyZMuSKU52enrd8tiSaSudcR4RQAAB\nBBDwgkAoasmEC+pFBttI5ftEJDJmqMHkhRyoIwIIiERAQKDYAmE7/Fm9OWyqWHTOkLJgAAEE\nEEDAWwKVB5TJ/pc3Sv/GuFQeUC7m+iQKAgh4S4AGkrf2l+9qGzt3eaN27X2hk5ieqd3e1S63\nOOM8IoAAAggg4DWBaENETFAQQMCbAvz1enO/+afWldFPajKp25Dr0aM//ODBaV3+SZBMEEAA\nAQSCLmA6auh6tk+6X+yTeHtCrDJLKiZGpXZqpUTqOQUv6K8P8i89ARpIpbdPglQjS0znDK6z\nDxLxBPc+CtIrgFwRQAABnwv0vT0g629tk4FN6Z01dD3TJ1se7pSG99fI2JPSbzTrcxLSQ6Dk\nBWgglfwu8m8FY82t79fT6w5xMrTFfvza249qdcZ5RAABBBBAwMsC/RvisvbGLWL3Dd/Vtx0X\n2fxQpyT0xrKNs2q9nCp1R8BXAvRi56vd6a1kbMv6rLvGlm1x9MgNwjACCCCAgGcFbO2Sdf3i\nthEbR+7E2h7tkp7X+92TGEYAgSIK0EAqIn6QNx2b3Tpez6+b7RjoB0mb9PYvcsZ5RAABBBBA\nwMsCPS/3S/96PUSUZTGNJAoCCJSGAKfYlcZ+GJVaaCOkTjd04KhsbBcb+a8vv/ipjWt7o85i\nY5rK7rvi51MPXaAXJe1meduyrLd287k8DQEEEEAAgbwKdL+S2xGh7lf68rp9VoYAArsvQANp\n9+28+MzvaaXTTmsrRhLmtIOB/mTapj/y9ckX6QQTu1WStv2iPvHQ3XoyT0IAAQQQQCDPAqa3\nulyKPSCS6E1KuIKTe3JxY1kECiFAA6kQqqW7zopX23vl7293FrWGndrNaduGoV/WKveLyiN9\nWqcXd69eB9SVy1FNNVVFTYqNI4AAAggg4BIIV+bY0NEeXUPa/TcFAQSKL0ADqfj7YFRroAdv\nZEDvx1DMsuXJ9POsa2dW7VGdEsVNp5iUbBsBBBBAoEQFKiZFZdsT2VeuYt+oWCEaSNmLsSQC\nhRPI8eeNwlWENQdDIN6RkK7nh86zDlVaUnN4RTCSJ0sEEEAAgcAIVE8pl3BN9l+z6o7hRIjA\nvDhItOQFsv/LLflUqKAXBNpX9oi4Lj+qnV4poSi/mHlh31FHBBBAAIHsBUJlIWk6x/SNtOtS\neVCZ1E7lx8JdS7EEAqMjQANpdJzZigrYempf+/LuNIt6Pb2OggACCCCAgB8Fat5dIeNn14uE\nR86u6pAy2ftDYzi9bmQi5iAw6gJcgzTq5MHdYPdL/RLfNnT4qGL/qJQ18RIM7iuCzBFAAAH/\nC9TNqJTKyVFpW9Yt3dpJ0cC2hITKLamYGJW6o6o4zdz/LwEy9KAA3049uNO8WuV3HD3ifGuv\n7krqjQACCCCQg0B0bESazt716XbJAVs6Vvds782u5sgKjirlYMyiCORTgAZSPjVZ14gC5n4Q\naZ0zVGnnDHrqAQUBBBBAAAEEdgi8fVubdD2zoyOjruf6ZEJzPY0kXhwIFEGAa5CKgB7ETbav\n0M4ZXN1x12nnDFaEzhmC+FogZwQQQACB4QV639C7xQ6Wzn/0ysal7c4ojwggMIoCNJBGETuo\nm9reOcOK9M4Z6uicIagvB/JGAAEEEBhBoO6oyrQ5pufXTffTSEpDYQSBURCggTQKyEHfRN+6\nuMTbhzpnqDygTMoaObsz6K8L8kcAAQQQSBdoOLVGzLVH7mI6d9jySKd7EsMIIFBgARpIBQZm\n9SKROn2Zubo4rT+err15XSCAAAIIIJApYIUsmXBhvVQdVp42a8ufOqXt8a60aYwggEDhBGgg\nFc6WNQ8KROrCss9Hx4q5Kez4C+qkZkr6r2NAIYAAAggggMAOAStsyV7zxmjX4GVpJJvu7ZB2\n7eGOggAChReggVR4Y7agAlUHlW//Vczc84GCAAIIIIAAAiMLhKKW7H3xGCmfmH46+obbt0nn\nM70jP5E5CCCQFwEaSHlhZCUIIIAAAggggED+BELlIdnnYw3pN1TX3mDXt7RJ98s7ugLP39ZY\nEwIIuAVoILk1GN5jAdu2pXftgLSv7JZtf9e7huubuB139e+9x1tgBQgggAACCARDIFyljaRP\njpXIWNeFvAmRt25uk543+oOBQJYIFEEg/dhtESrAJv0j0PVCn2y6r10GNuu7t6uEKi1pOLlG\nTOcMlsW9j1w0DCKAAAIIILBTgUhtWCZqI2ntjVsk0bGjR1h7wJa3btoqEz/dIOV7RXf6fGYi\ngEDuAhxByt2MZwwjYHrXMW/WmY0js2iyx9b7OHTI24u3iTnCREEAAQQQQACB7AWiYyMy8RMN\nYn5wdEqy15Z1v9sq/ZvjziQeEUAgTwI0kPIEGeTV9Lzer0eOOnZJ0PlUr7Q9Rjelu4RiAQQQ\nQAABBDIEysZHZJ+PN4hVNtRISnQlZd1vt8jAtvQzNzKeyigCCOQoQAMpRzAWf6fAlv+nN7DL\n8sDQlj93SbJ/6Kax71wbUxBAAAEEEEBgOIGKiVHZ5+KxYrkukIhv29FIMo0lCgII5EeABlJ+\nHAO7lkR3UswRpGyL3WdL9yvZL5/telkOAQQQQACBIAhUHlAme31ojIjrG5w5vf3N3+k1Sr00\nkoLwGiDHwgu4/rwKvzG24D+BgS167nOWR4+c7Ie7TsmZxyMCCCCAAAII7Fyg+rAKmTCnXmTo\nbDvpXx/ffi1wsj/HD+Wdb4q5CARSgAZSIHd7HpMOud6ds1ytxasuSykWQwABBBBAYHiB2iMr\npencurSZvW8MyPr/3crtNdJUGEEgdwG+quZuxjNcAmUNem+GHF9FZU2uk6dd62IQAQQQQAAB\nBLIXqJ9ZJeNm1aQ9ofulflm/uE3sJEeS0mAYQSAHgRy/2uawZhYNhECoIiTVh5ZnnWu4JiTm\n/GkKAggggAACCOy5wNgTa2Ts+6rTVtT1TJ9suLOdW2ukqTCCQPYCNJCyt2LJEQTGnVab1qPO\nCIttnzxuli4bzv20vJ2tk3kIIIAAAggEWcB8Dte/pyqNoGNVj/zlpg3cRTZNhREEshOggZSd\nE0vtRMDcm2FC85hdNpLML1x10yt3siZmIYAAAggggMDuCDSeXSu10yrSntr60JbIrd9/4/S0\niYwggMAuBWgg7ZKIBbIRqHlXhex72TipOlhPn8s4QFQ2ISJ7f2SMmF+4KAgggAACCCCQfwHL\nsmT8BfVSPSX9tPfnlm+bFZvbekX+t8gaEfCvAFfL+3ffjnpm5XvpDez0Lt/mZnX9G+NiJ2yJ\naicO0bG8zEZ9Z7BBBBBAAIHACZhT2PeaN0bW3bRVetz3HLSsH82fu3rbwsXT/ydwKCSMwG4I\ncARpN9B4ys4FwtXaEcPkMqk6qJzG0c6pmIsAAggggEBeBayIJXtfNEbK93VdfmSJFbKsG+bP\naZ2T142xMgR8KkADyac7lrQQQAABBBBAIJgCofKQ7POxsTJu3/JkSsDS40sh6+b5c1afkZrG\nAAIIDCtAA2lYFiYigAACCCCAAALeFQhXhmT21/brq6wJb3Ky0MuUyrSRtOTqC1e915nGIwII\nvFOABtI7TZiCAAIIIIAAAgh4XqBqTEQu+trkX9q2vdZJRjtzqAqHQ/fEmldNd6bxiAAC6QI0\nkNI9GEMAAQQQQAABBHwjMOmwqjYrOXC63jV2Yyopy6oXCT14VXPrYalpDCCAQEqABlKKggEE\nEEAAAQQQQMB/ArHbZj6XSNpnaCNpWyo7y2qKWNZDsebl+6WmMYAAAtsFaCDxQkAAAQQQQAAB\nBHwucO1t01eJ2Ofo6XbdrlQniUT/+G/nPT7BNY1BBAIvQAMp8C8BABBAAAEEEEAgCAKxlumP\n6r3ctatveyCVr2UdEi2vejB2waoxqWkMIBBwARpIAX8BkD4CCCCAAAIIBEcg1jLt/mTSulgz\nTnUBrr3bTZVo+N6vzGqtDo4EmSIwsgANpJFtmIMAAggggAACCPhOYOHiqS1J275MbP3PKZYc\nXz3GuuPyM+8tdybxiEBQBWggBXXPkzcCCCCAAAIIBFZgYcu0Xyct+bIbQE+/O21czb63NDcv\nCrunM4xA0ARoIAVtj5MvAggggAACCCCgAgsXTb3etmVhGoYls99tHfYbnabtJQoCwRSggRTM\n/U7WCCCAAAIIIICAXNMydYGdtH/qprDE+nhs3pqfuKcxjECQBGggBWlvkysCCCCAAAIIIJAh\ncM3iaVfYdvK3GZMvXzBv9bUZ0xhFIBACNJACsZtJEgEEEEAAAQQQGFHAfkZeuFTvkbTEvYQl\noavmz12ddp2Sez7DCPhVgAaSX/cseSGAAAIIIIAAAlkKtLTMS1jy/EXar91D7qeEQqEfxOa2\nXuqexjACfheggeT3PUx+CCCAAAIIIIBAFgKxlnn9ndvs2dpxw7K0xUPWL2PzVs9Lm8YIAj4W\noIHk451LaggggAACCCCAQC4CP3hwWpc1kDhbn9Pqep5+X7Rumj93zZmuaQwi4FsBGki+3bUk\nhgACCCCAAAII5C4Qu2NGmwzYs/Q+si8MPduKhiz7tqvntp40NI0hBPwpQAPJn/uVrBBAAAEE\nEEAAgd0WiN0+bYNlD5yup9u9kVqJZVWGQtbdVzevOTo1jQEEfChAA8mHO5WUEEAAAQQQQACB\nPRWItcx8w4ontZFkb3DWpXePrdMjSfdfNXvFu5xpPCLgNwEaSH7bo+SDAAIIIIAAAgjkSSB2\n+/QXkvHELG0ktTmr1BvJNkYikYdiF6ya7EzjEQE/CdBA8tPeJBcEEEAAAQQQQCDPAtfeflSr\nZSe14wa7K7Vqy5ooZeE/xpqf3Cs1jQEEfCJAA8knO5I0EEAAAQQQQACBQgnEFs9YlrSTpgvw\nftc2DrKt8odizcsaXNMYRMDzAjSQPL8LSQABBBBAAAEEECi8wMKWGQ/pkSS9maydcLamp9sd\nIVJ9b6z54RpnGo8IV2WNugAAJEZJREFUeF2ABpLX9yD1RwABBBBAAAEERkkgtnj6Er0n0qWi\nfYCnNmlZx9rScOflZ95bnprGAAIeFqCB5OGdR9URQAABBBBAAIHRFoi1TP2tWPYV7u1alnVq\nQ83ERbFTHo64pzOMgBcFaCB5ca9RZwQQQAABBBBAoIgCsUXTfip2coG7CtpIOk/Gj/utTtPe\nwCkIeFeABpJ39x01RwABBBBAAAEEiiYQa5m+UJLJ6zMqcPGCea0/y5jGKAKeEqCB5KndRWUR\nQAABBBBAAIHSEdBrkr6snTb82l0j7bjhX2PzWq9zT2MYAS8J0EDy0t6irggggAACCCCAQGkJ\n2P+Q5z+rVWpJr5b1zdjcVaekT2MMAW8I0EDyxn6ilggggAACCCCAQEkKtLTMS6x7uf9i27bv\nd1cwGQof4h5nGAGvCNBA8sqeop4IIIAAAggggECJCvxqxcwBq3dgjnb+fY+pojaWVof6ExlH\nlUq08lQLgQwBumLMAGEUAQQQQAABBBBAIHeB2F0zu/VZ58QuWDXmmjtmbNPhoXsl6Uhz86Lw\n4fYhxyZDof1DiWSPJGR17I4Zr+ksCgIlJUADqaR2B5VBAAEEEEAAAQS8LaCNnraMDKz5za1f\n1NOWviUhq2n76UvhsIj+rz3e/cWKy5WxJdNWZjyHUQSKJsApdkWjZ8MIIIAAAggggIC/BWIS\nCy1obl0Usqwfi2U1ZWarPd69z45Yj8WaW8/LnMc4AsUSoIFULHm2iwACCCCAAAII+FzAbr5w\ngd5Adu7O0tS7ylborWVvjjWvOHhnyzEPgdESoIE0WtJsBwEEEEAAAQQQCJBA7NzljZbYX80u\nZavatqMLsluWpRAorAANpML6snYEEEAAAQQQQCCYAhVl5+hpdZVZJ2/JBZcdvTya9fIsiECB\nBGggFQiW1SKAAAIIIIAAAkEW0C7sDsslf8uSmqb9Q/vk8hyWRaAQAjSQCqHKOhFAAAEEEEAA\ngYALWJad1s13NhzRcDLn52SzXpZBIBcBGki5aLEsAggggAACCCCAQFYCSZHns1rQWciWDtnY\nsc4Z5RGBYgnQQCqWPNtFAAEEEEAAAQR8LDAw0Hu3bdvm5rFZFduyb4898v54VguzEAIFFOBG\nsQXEZdUIIIAAAggggIAXBLQhc4LWc+981/V317yy9LVnuj68q/WGQlbPvC/t93jsVnvOrpbd\njfmPaVfj63fjeTwloAI0kAK640kbAQQQQAABBBBwBPRqoQcStl2hFwDpmXH5Kxd9a7Lc+fM3\nE88sawuPtNZoNGTPvnJS5MAZtT8eGLwEqb8nKU/cszkUjyetmbMaErUNu9e5XcSSiDaOvqfb\n/uZI22c6ApkCNJAyRRhHAAEEEEAAAQQCJmCLHX50XXvkza7+vGdun1EuTQ11suWRTkl0pre/\nKg8sk8YP1lora/qiK1/sS2377SVt0rG6d/v44/dtCo87tUbqj6sSK6S3lc2hnDppTN/eVdER\nG2c5rIpFAyRAAylAO5tUEUAAAQQQQACB0RbQIzhS/54qqZtZKX1vxSXelhBLv4GW7x2VSN3w\nbZeBzYlUNe1+Wzbd3yHtq3qk6dw6qdyvLDWPAQQKIUAnDYVQZZ0IIIAAAggggAACaQLm6E/F\nxKjUHF4h1YdVjNg4Mk8ae1K1SEbbqf/tuLx54xbZcMc2SXSnH4lK2xAjCOyhAA2kPQTk6Qgg\ngAACCCCAAAL5FaieUiH7faFRKg9659Gi9pU98vpPNkr7ym7RziXyu2HWhoAK0EDiZYAAAggg\ngAACCCBQcgJl4yIy8RMNMmFuvYRr0r+yJntsPZLUvv2IUt/6gZKrOxXytkD6q83buVB7BBBA\nAAEEEEAAAZ8J1E6tlP2/2Cj1x1aJZPTR0PvPAfnnf2/Wa5TaJdnHaXc+2/VFS4cGUtHo2TAC\nCCCAAAIIIIBANgKhipA0nV0nkz43Tsr3zejyW9tFbcu65fWfbpLOf+zo+S6bdbIMAiMJ0EAa\nSYbpCCCAAAIIIIAAAiUlYHq+2/czDdt7swtVph9OSnQkZf2tbbLu91ukf3O8pOpNZbwlQAPJ\nW/uL2iKAAAIIIIAAAoEW2N5t+DFVetpdk9ROr3yHRfdL/fLPn2+SLQ/rfZcG6MThHUBM2KUA\n90HaJRELIIAAAggggAACCJSaQLg6JBMurJe6oytl413t0r9h6KiRrYOmgdTy9CtlJ53XNLnU\n6k59SluAI0ilvX+oHQIIIIAAAggggMBOBCr3L5NJ/zJOxs2qEass/bS79o0D1j2/Xte8YN6a\nW7/VvHriTlbDLARSAjSQUhQMIIAAAggggAACCHhRwApbMvbEGtn/8kapflf5O1LQZtO8qISe\njc1tvaK5eVHGLWjfsTgTAi5AAyngLwDSRwABBBBAAAEE/CIQqQ/L3heNlb0/OlYiYzPaQZbU\nSsi6/t0yZWVs7qoT/JIzeeRfgAZS/k1ZIwIIIIAAAggggEARBaoPLZf9vtAoR53bGA+FrKGL\nk7ROliVTxQo/umBe6w3fnP3EuCJWk02XqAANpBLdMVQLAQQQQAABBBBAYPcFQlFLZl7YmPjE\nggP/R2x5KG1NlmknWZeWRyqfj81b/Wmdl37xUtrCjARNgAZS0PY4+SKAAAIIIIAAAgES2G9K\nVVusZeosSdoX2WKvS0vdEj2CFPr1guY1j8bmrJiaNo+RwArQQArsridxBBBAAAEEEEAgOAKx\nxdP+t6e3Y4rY9k80Eu7M9XDSCXYoskIbSj/82nmP1rrnMRw8ARpIwdvnZIwAAggggAACCARS\n4HtLT+yItUy7IhFPHK1Hkx53I+gNaCPaUPpSVXnts7Hm1rnueQwHS4AGUrD2N9kigAACCCCA\nAAKBF7j29qNar1k07YSkyGW2LVvSQCxrol6h1BKb13p/rHnFwWnzGAmEAA2kQOxmkkQAAQQQ\nQAABBBDIELAXLpp6g9Xbf5hONx052OnzrTNEok/Pn9u64PIz733nzZXSF2bMRwI0kHy0M0kF\nAQQQQAABBBBAIDeB2F0zN8UWTf10IpE4Sa9Neirt2ZaUazfhsYaafZ+eP2e1NpgoQRCggRSE\nvUyOCCCAAAIIIIAAAjsVuHbJjMdk45ajksnkV/S0u073wnpt0sGhcOj+2Lw1i77VvHqiex7D\n/hOggeS/fUpGCCCAAAIIIIAAArshEHvk/fGFi6f/0ErY7xKxbxtmFc0RCT03f96aK2OnPBwZ\nZj6TfCBAA8kHO5EUEEAAAQQQQAABBPInEFsybW1s0bS5esrdmbrWl91r1qNJNfoF+kd207gV\nsbmrTnDPY9gfAjSQ/LEfyQIBBBBAAAEEEEAgzwLaJfj9smHzEXrK3ULtwqHPvXptKE0VK/yo\ndgl+4zdnP6E3nKX4RYAGkl/2JHkggAACCCCAAAII5F1AT7vrvaZl6oJ4MnGkNpQeTNuAJfqf\ndUl5pPL5+c2tl+g8K20+I54UoIHkyd1GpRFAAAEEEEAAAQRGU+Dbt814URtK2pNd8kPaI/i6\ntG1bMi5kWTfGmtc8FpuzYmraPEY8J0ADyXO7jAojgAACCCCAAAIIFEsgtmj6op7ejinaSPqx\nXqOUSKuHJcdLKPJ4rHnV9LTpjHhKgN43PLW7qCwCCCCAAAIIIIBAsQW+t/TEDq3DlVfPXvnb\ncCTyCz2x7vhUnSyrMpkMmc4dVqemDQ7E5qw5MBmyz9WjTQdpL3n9YltPi3QujbWcsCVzWcaL\nJ0ADqXj2bBkBBBBAAAEEEEDAwwLX3n5Uq1b/vbG5ev2RZX1XG0rjTGcOISt5nzut2LnLq6Qi\n+lOd/6mQWINncOnlSvq/bdd0zp+7Oma6F3c/h+HiCXCKXfHs2TICCCCAAAIIIICA9wXs2OJp\nN8pA4uBkwp4rMnBErGVG6ujRlc3LKrVx9CfTmYOm+o7v3tu7DQ+FfhCbu/pn3qfwRwYcQfLH\nfiQLBBBAAAEEEEAAgSIKxO6Y0aabf8fNZeul+t+1cXTsLqsWCn1+/pzWhxfeNu0d69jlc1kg\nrwLvaMXmde2sDAEEEEAAAQQQQACBgApsvz+SJf+abfqhsHV1tsuyXOEEaCAVzpY1I4AAAggg\ngAACCARYIBopP00vNIrmQDDtW82rJ+awPIsWQIAGUgFQWSUCCCCAAAIIIIAAAiE7tH+uCiFJ\n7pfrc1g+vwI0kPLrydoQQAABBBBAAAEEENgukAxJV64U4aSd83Ny3QbL71yABtLOfZiLAAII\nIIAAAggggMBuCdh2fGVuT9TG0eb2F3J7DkvnW4AGUr5FWR8CCCCAAAIIIIAAAioQbln6hD48\nmy2GLXJL7JH392a7PMsVRoAGUmFcWSsCCCCAAAIIIIBAwAViEkvqnWC/oJHIguLtgfjA/CyW\nY5ECC9BAKjAwq0cAAQQQQAABBBAIrkCsZZreJNb+pNjSN6KCLW9J3D7ruiUz3xpxGWaMmgAN\npFGjZkMIIIAAAggggAACQRSILZp+Uzw+MEOS9i3aUOpwDGyx19lJ+wd98Z4jY0um5Xi9krMW\nHvMtEMn3ClkfAggggAACCCCAAAIIpAt8+/ajzbVIH9HT7kLSfNb4vrg98O+3H7s5fSnGSkGA\nBlIp7AXqgAACCCCAAAIIIBAIge3XJbXE1gciWY8mySl2Ht1xVBsBBBBAAAEEEEAAAQTyL0AD\nKf+mrBEBBBBAAAEEEEAAAQQ8KkADyaM7jmojgAACCCCAAAIIIIBA/gVoIOXflDUigAACCCCA\nAAIIIICARwVoIHl0x1FtBBBAAAEEEEAAAQQQyL8ADaT8m7JGBBBAAAEEEEAAAQQQ8KgADSSP\n7jiqjQACCCCAAAIIIIAAAvkXoIGUf1PWiAACCCCAAAIIIIAAAh4VoIHk0R1HtRFAAAEEEEAA\nAQQQQCD/AjSQ8m/KGhFAAAEEEEAAAQQQQMCjAjSQPLrjqDYCCCCAAAIIIIAAAgjkX4AGUv5N\nWSMCCCCAAAIIIIAAAgh4VIAGkkd3HNVGAAEEEEAAAQQQQACB/AvQQMq/KWtEAAEEEEAAAQQQ\nQAABjwrQQPLojqPaCCCAAAIIIIAAAgggkH8BGkj5N2WNCCCAAAIIIIAAAggg4FEBGkge3XFU\nGwEEEEAAAQQQQAABBPIvQAMp/6asEQEEEEAAAQQQQAABBDwqQAPJozuOaiOAAAIIIIAAAggg\ngED+BWgg5d+UNSKAAAIIIIAAAggggIBHBWggeXTHUW0EEEAAAQQQQAABBBDIvwANpPybskYE\nEEAAAQQQQAABBBDwqEDEo/Xek2qP1SfXa5RrdGq0aXRpUBBAAAEEEEAAAQQCKhBPJP5XLOt4\nP6YftqzrLcv6sR9zK0ROQWkgzVC8z2ucp9E0DOQrOu2PGldpbBxmPpMQQAABBBBAAAEEfC1g\nnfh6e9/EjT0DvsrywPoKaaqMTvdVUgVOJggNpPlqeM2g4xv6+DeNLRrm6JE5ktSgsZ/GZRpz\nNL6ocbMGBQEEEEAAAQQQQCBAAhu0cfTytl5fZayNI9NA8lVOhU7G7w2kZgU0jaP7Nb6lsVJj\nuGLpxJM0fqjxB43XNJZp7Ek5UJ+c7atxwp5sKJfnRkOW1EbDuTyl5JetCOd2KZ0aWH4zqIrm\nZhDR4+x+M6jJ7XWtAuI7g+ocXwdi+88gou9xuZbasojEk3auTyvt5XXf6n9ZF/P3k9MTsl5z\n8RY0f+O5bN0Y9Cf89Tow7/W5GJjPEr99NpjP/FwMzHcKHxrkQsCyKuD3BtIFmqM5fc489mmM\nVMw74l80Zmm8rvFxjT1pIB2sz39RI9eSyPUJOS7fMam2XEz4rSRtuy3LnDoaKyJl5x1oDhz6\nq+iLuD3LjDpqy8IVfjTQ/M3PfvEsHNrLw6FynxqY95GeLAw6tC0R9qmBeU83Zwnsqphl7LMm\nj83pC9SuVloi880vYR1Z1MW8VhIfmDTGX7+c7UjcfNhlY2DeM3pP3KeuYsfTfPWvySkbA730\nxmp/z4TaSl9lvyOZsuwNpG16U/VEDR8yZP0dwY+555yTHz8U3AhP6UirxkfdE3cx/KjO36px\n7i6W29XscbpAtkeQjtZl79Ywb+b9GgUptm2bBnFjQVZe/JW265t7966qoQbmUIu5Ds2Pr/1O\nNdjll0I1MLmP96lBt/mQ19x2WdTBGOR26G2Xay2JBXrVIKsfDNTAvB/48YeyfjUwp1LvsqiB\n+bXEfIHyW4mrwaZsklKDMbqcHxsHSTXYkKVBnS5Xlc2yHlvG/FiwQR3M406Lvg5qdAETfism\n941qkNxVYmpgXgPmteDHskkNsvkBcXdzN++j5mDECRp/292V8LzREXhQN/OsRrYNFdPDnfly\n9X2N0SymxxTzB+zHD+nRdGRbCCCAAAIIIIAAAqMvYL7Dmu+yvugF0I+/nrpfEr/TkSkat2kc\n656RMWx+UTfXIJlrlcyvB3doUBBAAAEEEEAAAQQQQCBgAn48tcK9C2/WEXMazbc1zClzb2qs\n1disYY4UmcOo5vSK/TX21jCHHr+s8ZgGBQEEEEAAAQQQQAABBAIm4PcGkjnUd73GnRrf0Xif\nRuaRJHPdyjqNH2r8ROOfGsUqnGJXLHm2iwACCCCAAAIIILC7Ar76Duv3BpKzk01PdhcNjpij\nRub+R+aCVHPx5jaNYhfnjmQdxa4I20cAAQQQQAABBBBAYDcFCtbZ2G7WZ7ee5seevHYLogSe\nNFPrkG1nEiVQXaqAAAIIIIAAAggggEBKwDSOVqTGGEAAAQQQQAABBBBAAAEEEEAAAQQQQAAB\nBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAA\nAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBA\nAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQ\nQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE\nEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAAB\nBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAA\nAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBA\nAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQSKI2AVZ7NsNSACkzXP92r8\nISD5utM8UEemaEQ1ntN4XiNo5TBN+N0a6zRWagxoBLmcqsn3aiwLEMJ+mutInzNv6rx4QCzM\n+8CRGuZ94VWNVRpJDb8Xs+8nZ5GkeY/oy2I5ry9SoQlM0zB/F69rtGoEIW9NM1UqdWiqRpPG\nnzU6NIJQJmuSu/o+tK8uM0OjS+OJwUd9oCCAgJ8E6jSZZzSC8ubn7Lu9dOAODTsj/qTj5stR\nEEqDJrlUw23QreOXBSH5EXI8a9DjgRHm+3Hy+MGc3a8D9/Chfkx6mJzO0WlbMyyW6/ghwyzr\nt0m1GXm79797+D1+S3yYfMwPJK9puPN+VcfN9KCU8zXRDRqOQb8OP6RhPjf9XLL5PnSNApgf\nER0b8+PR1/yMQm4IBFFgrCZ9v4b5Qw9SAymk+T4ymPet+nimxskav9YwvxY/rWF+QfR7eVAT\nNPv+Vxrmi4/5UPyrhpl2iUbQivmldL2GyT9IDaRZgzmbL0DXDxPGxe/lXE3Q/O0/pTFbw/w6\n/AsN8+XHTDNHlvxcyjW5H40QN+l08zexTqNRw8/FHDFq0zANZfOl93CNr2ps1timMVnD78Uc\nPTF/C5s0PqZhfjCco2GOJP9Nw7xW/Fiy+T50uiZu/haWaJj3CPO56XyHulyHKQgg4AOB2ZqD\n+cAzf+zm1IEgNZBOHsx7mT5mlnt0gjFpzpzhs/GZg3n+PSOvA3TcfDg+ljE9CKN3apLOr6ZB\naiB9XfM2r3nzdxHUYv4O2jUOyQAwP6AYm1Mypgdp9DZN1nxGHB+ApL+iOZr9vTAj19jg9Ksy\npvtx1PwtGIMTM5IzjQHz2fDjjOl+GM3m+1CVJvqqxlqNsCvpssHp/8yY7lqEQQQQ8IqAOWJi\n3gDNL0TnaazUCFID6ROar3mju1Qjs3xYJxibBZkzfDb+bs3HfAk4bZi8XtZpW4aZ7udJl2ly\nZr9fMPhofhUMSrlFEzVffGqDknBGnifruNn338iYbkYnaXxAY7wZCWC5SHM2NrGA5P7dwXzN\n56K7nKojxuHn7ok+HDZHh8xRU3Nq6XDlGZ1oflj1U8n2+5CznHmNZJbv6ATz+jg7cwbjCCDg\nLQFzmPhaDXMNiilBayDtyHr4f/9NJ5s3uo8OP9v3U81pAwmNFt9nOpSgOWrQqfEzDXNqpdn/\nQWogPav5PqcxTsN8Ib5S4wyNSo0glC9pkmafHzWYbL0+mtOMmgbHg/qwlyZuTi17XsOvp1Vl\n7lvTGDavhSUZM343ON38gOLnMlmTM/mbo4bDlcd1opk/cbiZHp2W7fehBYO5XzhMnub0dONi\nlqEggICPBGgg7diZjfqwUWObhvlyEJRiaaKf1DBHEto11mhM1ghCiWiST2qYBoI5hSJoDSST\ns2kQr9cw+958yDvxgg6b02r8Xn6kCZqczemld2kYD8fAfFE0DccgFqdRMC9AyYc112s0zFGU\npzW+q2E+H80R1h9qRDX8XEx+Axqrh0nSfCY6fxtHDjPfL5NG+j70X5qgeV84eZhETxqcZ67n\npSCAgI8ERnpD8FGKu0ylWpdwfh27ZJdL+2uBfTQd5wuhefy2ht+/CDh78FodMF8IjhmcELQG\n0nGat9nnfRpf1XiXhjn98joN8yXxbY0GDT+XWzU5Y2DeB1s1zN//hzTu0DDTH9OwNIJUxmqy\nPRrmdKqgvBc4+/cgHTA/Epl978RLOnyIRhDKw5qkyTuzYfzlwelm3gkafi0jfR+6SRM2uR8+\nTOJmmpn3h2HmMQkBBDwsMNIbgodTyqnq5sjRMg3zBveTnJ7pj4XNqVSTNGZq/LeGaTD8Q6NG\nw8/FfMibRsACV5JBayCN19w/rPFel4Ez+B86YP4mTIPZz+U+Tc7k+YyG2f/u8hcdMfNMgylI\n5YuarMk7FqSkNVfTKOjW+JuG+dHE/HBmHh/V6NIw8/1ezNEh84OJOVr0e42vaPxfjQ6NP2uY\n18U0Db+Wkb4P3agJm9yHO3o2dXCe8aIggICPBEZ6Q/BRiiOmYn4tfFHDvPH5/YvgiAgZM1oG\nPeZkTPfTaK0m84qGee3XaZhTzUyYoyXmtfDQ4HiZPga1OL+K3uNzgN9ofmaff36YPP91cN6P\nh5nn50lPaXLmhxJzdDlIxTSMTOdFmUdNzXVp5miaOcIYhDJDk3xSwzSSzOvANBBP1HAaCZN1\n2K9lpO9DCzVh8z5x8jCJnzI47z+HmcckBBDwsMBIbwgeTimrqh+hS5kPPfMB8JmsnhGMhT6o\naZoPAvPF0a/lfZqYyXFXYa7LCmoZr4kbn7/6HMD54jN3mDwPHTQI0qkzzmmXi4bx8POkJk3O\nNAhuHyFJ55qs/UaY78fJ5gia+0yCP+m4OZIW9WOygzmN9H3oczrfvB/OHib3CwfnfWOYeUwq\nsECowOtn9QgETcCcTmZOFzBv/mdr3KARpPJVTXarxqnDJJ0cnNY5zDy/TDINY/NrX2b8YjDB\nNwbnPTA47teHKzUx00vZRcMkOGVwmpnv5/LsYHJHDZPk3oPT/j7MPL9O+sBgYnf6NcER8jKN\nI/Ndy/wwMFwpG5wYHm6mj6adp7lcMpiPaQw5nwONOvxejSc0zI+KQSvO+8TJwyTuTDNH3SgI\nIOAjgZF+MfFRimmpmGtuXtXo1Tg+bU5wRs7VVM2vYcP9WnrP4Lzzg8ORytRcg2Jc7k9N8ffA\nnMF8n9ZHd0cEZtgYGAtztM3PxXzxNQ3iNzUmZiTaouPG4OiM6X4evWkw52l+TnKE3P6h0/s1\nZmbMN6+LNo21GdP9OLpYkzKv+ZMykvu+jptGpN/fD3b2fWiN5v+WRp2GU+p1YL3GKo2IM5FH\nBBDwh8DO3hD8kWF6Fgt11HwAmC9Epqeq4eJSne7nYr4A36thHB7U+IjGBRrOl+KgnV6jqW8v\nQWsgmV/DzWkz5nXwsMbHNMwpJOY1YabdoBGE8glN0hw5fUbjcxqzNMxpdcbAfDEMUjGfB6bz\nkvIgJT2Yq2kUmEbAFo2va7xfw3wWvK5hXgtnafi9nKwJmv3/gsblGudo/EbD5P9tDb+XnX0f\nMkfajcMKjbkazRrO38twR6B1NgUBBLwssLM3BC/nNVLdzS895k1uZ/GTkZ7so+l1mstPNcyH\noWNhTqm4SsPP55hreiOWoDWQDMRYDXNqoft1sEnHv6oRpGK+/DpfhM3fgzkN83sa5seEoBRz\nilm3hnM6UVDydudpGklPaTjviebRnGZ6ukZQyoc1UXOkxDHo1WFzOnIQjpDs6vvQxeqwxWVj\nhp1TEnWQggACCCDgFwFzyuF0jUM1/H5+vV/2WSHyMI3DIzUmF2LlHlrnXlrXKR6qL1UtjMA4\nXa05tbKpMKsv+bWaxpD5TDCnWlaXfG1Ht4LmR5ODNQ7XCOKR1tHVZmsIIIAAAggggAACCCCA\nAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg\ngAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAII\nIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAC\nCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAA\nAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCA\nAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg\ngAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAII\nIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAC\nCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAA\nAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCA\nAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg\ngAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAII\nIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAC\nCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAA\nAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCA\nAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg\ngAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAII\nIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAC\nCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAA\nAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCA\nAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg\ngAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAII\nIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAC\nCCCAAAIIIIAAAggggMAeCfx/NfP9WW+ZJmwAAAAASUVORK5CYII=", "text/plain": [ "plot without title" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "bar1 = barplot(as.vector(table(dat2$cover)),names.arg=seq(1:10), col = 'lightblue2',\n", " border = 'white')\n", "\n", "points(bar1,dpois(seq(1,10),4.66)*sum(table(dat2$cover)),\n", "\n", " cex=1,type=\"b\", col = 'mediumpurple', lwd = 3, pch = 19)\n", "#?dpois\n", "\n", "box()" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#?glm" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As you can see, the data look Poisson-ish but they're not perfect. (One reason you've probably already guessed: our data are bounded at 10, so variance should actually go down for the highest values.)\n", "\n", "Now let's fit a GLM to these data with just an intercept (overall mean):\n", "\n" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "\n", "Call:\n", "glm(formula = cover ~ 1, family = poisson, data = dat2)\n", "\n", "Deviance Residuals: \n", " Min 1Q Median 3Q Max \n", "-2.0594 -0.8229 -0.3132 1.0085 2.1430 \n", "\n", "Coefficients:\n", " Estimate Std. Error z value Pr(>|z|) \n", "(Intercept) 1.53891 0.01696 90.73 <2e-16 ***\n", "---\n", "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1\n", "\n", "(Dispersion parameter for poisson family taken to be 1)\n", "\n", " Null deviance: 749.25 on 745 degrees of freedom\n", "Residual deviance: 749.25 on 745 degrees of freedom\n", "AIC: 3212.2\n", "\n", "Number of Fisher Scoring iterations: 4\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "glm1 = glm(cover~1,data=dat2,family=poisson)\n", "\n", "summary(glm1) " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's add a continuous predictor variable like elevation to generate a simple Poisson regression. First we'll graph it:\n", "\n", "\n", "And then we'll fit the new glm and test it against a model with only an intercept:\n", "\n" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAEDWlDQ1BJQ0MgUHJvZmlsZQAA\nOI2NVV1oHFUUPrtzZyMkzlNsNIV0qD8NJQ2TVjShtLp/3d02bpZJNtoi6GT27s6Yyc44M7v9\noU9FUHwx6psUxL+3gCAo9Q/bPrQvlQol2tQgKD60+INQ6Ium65k7M5lpurHeZe58853vnnvu\nuWfvBei5qliWkRQBFpquLRcy4nOHj4g9K5CEh6AXBqFXUR0rXalMAjZPC3e1W99Dwntf2dXd\n/p+tt0YdFSBxH2Kz5qgLiI8B8KdVy3YBevqRHz/qWh72Yui3MUDEL3q44WPXw3M+fo1pZuQs\n4tOIBVVTaoiXEI/MxfhGDPsxsNZfoE1q66ro5aJim3XdoLFw72H+n23BaIXzbcOnz5mfPoTv\nYVz7KzUl5+FRxEuqkp9G/Ajia219thzg25abkRE/BpDc3pqvphHvRFys2weqvp+krbWKIX7n\nhDbzLOItiM8358pTwdirqpPFnMF2xLc1WvLyOwTAibpbmvHHcvttU57y5+XqNZrLe3lE/Pq8\neUj2fXKfOe3pfOjzhJYtB/yll5SDFcSDiH+hRkH25+L+sdxKEAMZahrlSX8ukqMOWy/jXW2m\n6M9LDBc31B9LFuv6gVKg/0Szi3KAr1kGq1GMjU/aLbnq6/lRxc4XfJ98hTargX++DbMJBSiY\nMIe9Ck1YAxFkKEAG3xbYaKmDDgYyFK0UGYpfoWYXG+fAPPI6tJnNwb7ClP7IyF+D+bjOtCpk\nhz6CFrIa/I6sFtNl8auFXGMTP34sNwI/JhkgEtmDz14ySfaRcTIBInmKPE32kxyyE2Tv+thK\nbEVePDfW/byMM1Kmm0XdObS7oGD/MypMXFPXrCwOtoYjyyn7BV29/MZfsVzpLDdRtuIZnbpX\nzvlf+ev8MvYr/Gqk4H/kV/G3csdazLuyTMPsbFhzd1UabQbjFvDRmcWJxR3zcfHkVw9GfpbJ\nmeev9F08WW8uDkaslwX6avlWGU6NRKz0g/SHtCy9J30o/ca9zX3Kfc19zn3BXQKRO8ud477h\nLnAfc1/G9mrzGlrfexZ5GLdn6ZZrrEohI2wVHhZywjbhUWEy8icMCGNCUdiBlq3r+xafL549\nHQ5jH+an+1y+LlYBifuxAvRN/lVVVOlwlCkdVm9NOL5BE4wkQ2SMlDZU97hX86EilU/lUmkQ\nUztTE6mx1EEPh7OmdqBtAvv8HdWpbrJS6tJj3n0CWdM6busNzRV3S9KTYhqvNiqWmuroiKgY\nhshMjmhTh9ptWhsF7970j/SbMrsPE1suR5z7DMC+P/Hs+y7ijrQAlhyAgccjbhjPygfeBTjz\nhNqy28EdkUh8C+DU9+z2v/oyeH791OncxHOs5y2AtTc7nb/f73TWPkD/qwBnjX8BoJ98VVBg\n/m8AAEAASURBVHgB7N0JnCNF3f/x6iQzs3Pt7syC3KfIJZeCAiqKgiIKqOAI7PGIBx5/5dHH\n+8L7eLz10QcVD9S9wBVBQEHw4hFBRRA5FuRcbjlmZncncyfd/+8vSS+92SSTTjK7M9lPvbY2\nne7q6qp3V3equnsS5wgIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAC\nCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAA\nAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCA\nAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg\ngAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAII\nIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAC\nCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAA\nAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCA\nAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg\ngAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAII\nIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAC\nCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAA\nAggggAACCCCAAAIIIIAAAqUEvFIzmYcAAghMk0Cn8n16JO+7NT0SeR+dPEBvEoUZ/9br49GF\nM2S6S+XYM1KWmyPTm3tyP22wpbDRh/Q6sLkLwPZmtcBMasuNhrRzjp17LDxWiLk3/IcAAggg\ngAACCGxpgaNUgCASj6xQoPFIurMrpNuSi14WKaPVK7kFC2ODotD2zC1YDjY9OwVmUluuVfCZ\nWvFdJVa+VvPCY+MzJZYzCwEEENhIILw6u9FM3iCAAAIIIIAAArNEoEfl/B/FmxRfNEvKTDER\nQGAGC6RmcNkoGgIIIIAAAgggMJXAV5XgDRUSPaJl9xaWD1ZIxyIEEEAgJ8AAiYaAAAIIIIAA\nArNZIPr31PYoXXF4bfEM3iOAAAKVBBggVdJhGQIIzHSBvVXAVyo+S9FX/KfiHxTtUZtosMeJ\n3x2Z8XVNb6P4asUXKA4pXqP4c8WMonW4TlB8seJ2in9WvEIxvAqtyaqDbfuliscr7qpoV7Dt\nyxyuViwup2ZtFLr17hTFAxT3UnxS8V+KP1Z8QrGaYNt/i2JHIbE5/VDR6lxNqLUMOyrzhYpW\n9rmKdyhavS9RjH4xx256b3UMw0800R++iby+TdNhHf6k6esjy+xvv05WPEzRnOzLP8z2YsVR\nxeIQzetHWmh/u7JY0fb95YpXFqb1slFoRFlfoBxfrmhtYb6iffnIvYrLFe9XbGSo9viodpvV\n5neaMrT9b+FOxctyUxv/d7DeHlOYNanXb0UW76LpJYpPV3yaou1D+6KW3ypeqhgOguZp+k2K\ntv/C8AxNvEfR1vlOYWa0PH/RvGsL86MvVt6FilO113CdPTXx6sKbh/T6M0VrH3acP1/R2vjf\nFZcqjikSEEAAAQQQQACBkgJHaa51bsJYz5c0vEP5WCcozCt8zWrepxWTimFo0US43F6tI/1g\n0Tybf4FiV+E1mt6mbWCzv2I0vExvoumi27R0NjCwDlk0TTht5fy6YrtiqXCsZlqHOUwffbXO\n1xmK0WCdtDDNmZEF1vEM59vrOyPLppqMW4Ywv0WasMFGdLvhtHWYbZAQhk5NrFMMl78rXBB5\nPTiy3NIdGFm2m6avKVoe5nVbUdpwNRuUhGnermnroIfvH9N0SrFUqKes1gZ/qRhup/jV2kN0\noFhq+3HmxTk+LN+p2nKc/M5WfmH9zNrqXhwu0owwzYWRhbY/yrUdS79csbWQ3gYpYR7Fr9FB\ntg2IwuWfKawbfYnTXsP1TojkaRc7XqoYbcfh9uyiwC6KBAQQQAABBBBAoKTAUZobdhzs9SuK\n1vEqFaOdJOtwRcOZehPNZ0LvnyyaZ3mHwTpo0fQ2wLD3NkhKFy2zr8e2ZfYtetGOtM27T9Hu\nyIShUqeyS4miHTNbP6tor9H4e733FKPhEL0pTltcP/N5SWSlUgOk92t5dFvFjpHVN5mspQyW\nyesUo/uuVL2tbtGyn6P3YTlv0HRx+JpmhMuviyxs0/Q9kWWWxu40+JF5tn+3U4yG6H4N20KY\nf/RORnSdcLrWsn5RGYTbsLb1d8VfKUb3q03voFhviHt82PYqteW4+dndmOig88SiCm2j93bM\nhh7HFZbbBZPovrM7L7cohsdkmD5sx40YINXSXq24JyiG5bHyhfW1ixq2f8Nl9nquIgEBBBBA\nAAEEECgpcJTmRjsO1U6HHSLLdJ5itIP7E73fSdE6y29WDPO0jm/Y2SweIFnn7BhFC92K9ohT\nuJ69XqVo27E8v6AYXfZMvQ9DpU7lZUoUrjek6TMUuxS3VbQ8ox3Bt+l9NETviNykBdYRtLC/\n4mrFMN8/2MxCKB4gnar50W18NUxY5WstZbAObthRtDJeobi3ovnbvr9TMSz7PZruULRQfIfo\ngPzs3P8p/W93dcL13hhZ9pHI/Cc0fZJiQnFfRbuqH67zDU1HQ7T9WJqfKb5K8SuKz1asFGot\na7Tuz49swMr7J0UbDPxd8QzFeoK122j9qjk+bHvl2nKt+V2kPEP/n9sGIuE/NR0uu0/TZmDh\nm4phm/2dptttpoK1n78qhutYu7LQqnigYvTO3G8L8/bXaxiu1US47mfCmXqttb1aFicohnna\n66OKVhYLcxVtYBcuf9hmEhBAAAEEEEAAgVIC1kkOOw1xXs+OZPamSB5ZTW8fWWaT1yuGeX+6\nsKx4gFQ8WPh2ZB3roO1cWM9edlQM87PXoxXDUK5TubcSRNcpHgDZ+isiaR6xGYWwn16j65pZ\nNLxKby5R/KyiXf32FC1EB0jL9N463GE+P9R0mE6TU4Zay7BcOYfbXKNpG2BGg+Ubvbv0lsjC\n6zQdrvulyPwTI/PtEabOyLIHI8vOicy3yVdGltmjmB02sxCiA4j7NW9OuKDK11rK+oDyDuv3\nB02frDi/sD2rkw0EGxFqOT5suy9TDMtnr0mbqVBrfsdp3TA/a4s9llkh3KDXcNnHwpmF1269\nPk/RjrtosHThOn+LLtD0eZFlFxYts7fXRpZ/JrK8nvZaPEB6TSRfm3yjYljeiaJlvEUAgRku\n0KgT8gyvJsVDAIEZKvB9lcs6jqXCJzUz7KRFl+8debNG08VX/O/UvMMKafYqvBa/2CAqGqzj\nHQYrz0PhG73a4zPRUNzpjy4Lp48OJ/Rqg7gfRd6Hk1b30wtv7E6X3Vl6QnGfwjx7sXX/HHlv\nk78sxKLZG71dtNE756zTaJ21akOtZXhxZAM/1fR45L1N3q5o9XmhvVE4OP+S+/97+v+Iwnsr\n/4cVrf6vL8yzF+vQDhfe24Bnp8K0vTyp+IrIe/t8m1RsUbQBkA16rW0Uh0s1wzrwcULcslre\nv1M8wyYUji5EG4zfqGiP2tl+/YdivaERx0e0DLXmd5UyuU9xD0U7Zk5T/I7iAYrhMVvq2LC7\nrTagsQFSn+LhikcpPkcxDNUcg2HaSq/1tNfifK8pmvFo5L21QWuvdlebgAACCCCAAAIIbCRg\nHZ3wqqq9HrnR0o3fjEfSnh1Z9IvI/GhepaavLqxnHZTo8uMj+dnkJxXD5fZIWzQk9CZcZq/H\nRRa+rGhZOKD7dGT+/ZH00cndImks3xcVFr4vMv/fhXnVvNigzvIpFW1gYgbVhlrKYHW3Dn+4\n/TeU2dh5kTR/iKSxDuRgZJk59ypG28Gz9D4MB2ki3FY1r9HO8OORdd8fZhjjNW5ZLeu5itE7\nJ6XKfJnS2MCgnlDL8WHbK9eWa83P8vywYljP62yGwlcUw3k2KCwOdmfGjsEwTanX4oHkeZH0\n1d5Bqre9WjmjZSs+vqy9RZdbmyEggMAsEbArbAQEEEBgNglMRAprHd1/Rt4XTz5YPKPw3u4s\nRIN1ZMIQzT+cF/d1bWSF7sh0dHJe9I2mnyy8XxeZHz6CFZlV9aR1xvdStO3sq/gOxW8oVhNq\nKYPdDUgrhvUNX4u3F613WGdLY1fXlyqeZW8UTlXcVbHV3ij8XTHaMS7eT9YBt+2XC9F9HE1T\ny1X9uGW17a1XfK7iqxTfqPgixS7FaHil3qxQPDo6M+Z01KXW4yO6yXry+5Ey+pSiDR7s7uDu\ninYnKQznhhOF19fr9YeKNnixYH/Hc6XiHxUPUPyCogUbiNcb6m2v0e1b2yo+pzSijNFtMI0A\nAptRgAHSZsRmUwgg0BCBeyO52N+zvFxxpnVG1kTK2KPppyveE5lnk4dF3lsn9M7C+/DV3rYp\n7q64RjEMe2riq4q3Kt6meJli8cDgZs2zOwLWEf+yooVPKC5TjA5KbH6pUGsZ1iizAwsZRh+J\nCrdhHd9nhW/0ah3gaPie3oQDpJM0vVtk4bmRaZtco2gdU0/Rwk8Vv5ubivef3aGqJcQpa5i/\ndcovVrS7Mvb5awMm20+vV9xd0cKLFBco9tubGkKjj4968ntM5f+l4msL9fiiXncqTD+o1ysK\n0+HLRzQRDo7+V9PvDBfoNWxXNsscy4VEuQUl5q/RvDDfWtprmKW1QwICCCCAAAIIIFCTwFFa\nyzoTYTyyQi7WcQ3TnR1JZ1fZw/n2+uLIMutcXav4F8UfKr5C0ULxI3bH5mdv+P8Tmgrz/NuG\nufkJ63CFy+z1uMhy69xGl4Wdu07Nt0FLuMw6xdFHcLbVe+t4hst/pekwWOd4VDFcZh3FaPi2\n3oTLBjU9p7Dwocj8MwvzbIAV3c53CvOneqm1DJ9UxmHZbPBavH/fG1nua/pwxeJwjWaEeYSv\nQ5pXfLfF1rs+kvZqmxEJr9P0PYqXKH5BMbq+3VkJ8z5D07WGast6sDZgA4U7FMcUD1WMBnMK\ny2OvOxQWbqNXa+9hDAeDhcUlXyxtNK9qjg/LqFxbrjW/sHB2rEXLE05/MkxQeLW6hsvs1S58\nRMPlehMuvzG6QNPfjyyLHkthMjsnhOt+Jpyp109G5sdtrydE1s1quji8SDPCbdprR3EC3iOA\nAAIIIIAAAiZwlGK001DcgY4qjUfSnh1ZYJ1Eu0MS5nO/ppcoHqNodxHC+fb6QkULm3uAZNv8\nL8VoWW7Q+48pWmf9ocgyG0jtrhgNn9ab6LqX6v0HFS9TtEd5wmXf0nQYonmGAyRbZgOFML11\nAg+ymVWEWsqwnfL9l2K4PRsMfFfx/YoXRebb8uKBn2blgu3LcP3wtfjuUSFp7odVwzT2+j3F\noxWt/g8rhst+r+loiA6QXh9dEHO62rJa5/hJxbA8t2r6DYr2rX59ilcphsvMLwzlBi3h8lKv\ntRwflk+5bdWaX1g2W/8uxbB+9ppV3EUxGuziwohimO46TR9RiD+MzLfl0Tuceuu+Flk+rOnP\nKdq5IAzlBkj1tFcGSKEurwgggAACCCBQl8BRWjvsANnrkRVyG4+kPbso3SF6/0BkeTTPcPrr\nkXVaitLaVe1o+ITehOv9LbpA04nIMktzXGR5uU5lmOSdmrA7JWHexa82ODo1TBx5bde0laM4\nffS9XUXvjKxTboBkSaIdxD9E1qk0WUsZLD/rdN6iGC1r8bQNWLoVSwW7I9avGF3nsFIJNc86\n398sShtdz6YfVdxHMRoaNUCKU1a7I2IDxuLyRd9bm7dBQRimal9huuLXuMeHrV9pW7XkFy3T\nB/QmWk8b6JcK0YFONL1NR493c+yKZPBqTRent/dzC2mi7T96B8kW19peGSAVcHlBAAEEEEAA\ngfoEGjVAslJsq2h3JdYqRjtHa/T+/ylGw5YaIFkZ7A7OrxWj5bQO3hWKeyqWCykt+ITigGK0\nfnaV/auKCxSjodIAyTrd0TxOia5YYTpuGcKsrGznKN6mGB0gWhnPUrSBTaUQ7SjfWClhYdnr\n9Wp3XrKKYT3tbtnPFPdSLA6NGiBZvnHK+hylt0ftouUMy2uDBhuIREOlQUs0XanpOMeHrT/V\ntuLmFy2TrRu94PGq6MLIdJumzTN6l9Tau13ssAH7GsXQa7Gmw2DH948Uw2X2+oTi7ooWKg2Q\nbHkt7ZUBkskREGhSgak+pJq02lQLAQSaTGAP1WdnReuA25Vm64DOtGB3og5UtI67debttdpg\ndbPBlN0NuV9xQnFzh1rL0KuC7qtoj0U9Oc2FtjtqZmyd8XsV1ynOxGB3P3ZVfJrivxVtn44q\nTldo9PHR6PyK6z1XM/ZWtP14u2K1x4oNdKytmaedC2oJm7O91lI+1kEAAQQQQAABBBBAAAEE\nEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAAB\nBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAA\nAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBA\nAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQ\nQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE\nEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAAB\nBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAA\nAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBA\nAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQ\nQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE\nEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAAB\nBBBAAAEEEEAAAQQQQGAzCnibcVtsqrLAYVrcUjkJSxFAAAEEEEAAAQQQmJECEyrVDTOyZDEL\nxQApJtg0JbfB0fXTlDfZIoAAAggggAACCCCwOQSsTzvrB0mpzSHFNqYUCO8cdSuljb4JCCCA\nAAIIIIAAAgjMFoFWFXRI0V5nfWCANLN2oQ2OGCDNrH1CaRBAAAEEEEAAAQS2IoHEVlRXqooA\nAggggAACCCCAAAIIVBRggFSRh4UIIIAAAggggAACCCCwNQkwQNqa9jZ1RQABBBBAAAEEEEAA\ngYoCDJAq8rAQAQQQQAABBBBAAAEEtiYBBkhb096mrggggAACCCCAAAIIIFBRgAFSRR4WIoAA\nAggggAACCCCAwNYkwABpa9rb1BUBBBBAAAEEEEAAAQQqCjBAqsjDQgQQQAABBBBAAAEEENia\nBBggbU17m7oigAACCCCAAAIIIIBARQEGSBV5WIgAAggggAACCCCAAAJbk0Bqa6psoa49ep2n\n2KaYVlyrOKxIQAABBBBAAAEEEEAAga1cYGu5g/Qs7ecfKD6uOKB4n+Idig8p2iDpHsXvKW6r\nSEAAAQQQQAABBBBAAAEEmlbg46pZUIj36/VaxcsUz1e8XPGvio8qWponFRcqbu5wpDZo22/d\n3Btme5tb4Oit8a7t5kZmewgggAACCCCweQWsD2t9WevTzvrQ7J21Pu2hTyleofhRxRsVSwVP\nM49S/KricsU1ijaQIiBQr4DX07n4NM9zb1I83DmvywWLR3UG+YfzvJ8MDK0+z7kbJuvdCOsj\ngAACCCCAAAIINEbABgbNHGywc4Ti/orjVVTU/j7J7jKtUHxbFekblcRG2zYgs7+LmmhUpuSz\nZQV62xft7JLepSrFARoYJTRA2vBIa6CgeZPOCx7ygskT+tMX3L5lS8vWEUAAAQQQQACBmgXs\nDpL1tZ+neF3NucyQFTd02GZIeRpdjIOUoe2kagZHtu1BxZsVd7I3BARqFejsPH07L5n4m9bf\n3/O8VHRwZHlqnoIeqQy8XZzX+tfutlP3rnVbrIcAAggggAACCCDQOIFmHyA9KqpDFVuqJLM7\nSDaosi9wICBQs0Cbl1oWuGCBRkF2RaVs0CCpRfeS5rS0tFykRM1+PJZ1YAECCCCAAAIIIDBT\nBJq9Q/YTQe+reKGi/v6jbAj/Bsn+VqlD8eKyKVmAwBQCve2L7fbyS6YaHIXZ2CBJ03v3di1+\nbTiPVwQQQAABBBBAAIEtI9DsX9KwQqxPU/ys4omKDys+pNivuF5xrmKv4m6KOyhmFN+r+GdF\nAgK1CSS9Po247YsX7G/Kqg02SD9N8WfVrkA6BBBAAAEEEEAAgcYLNPsASX8I776u+EvFzym+\nULH4TtKI5j2iaN9g903FBxXrDXZn7hhFuzNQTdivmkSkmTUChzkv1uDI/iYpqUfynj1rakhB\nEUAAAQQQQACBJhVo9gFSuNvu1cTphTd212ie4hzFxxXXKTY67K4M7U5Axb8/iWw0WZgOXyOL\nmJx9AoHal90Qihv0FeAEBBBAAAEEEEAAgS0qsLUMkKLI9midxekMNiCzL3yoNpyphOcqNvvf\nhFXrMcvTeXZH8sDYlQhyA/bYq7ECAggggAACCCCAQOME6JA3zpKcEMgJ6CeOfqffkh6Lw6F1\n9PtX/lVx1iEtAggggAACCCCAQOMFGCA13pQct3KBhD++Qn/8FvPY8lJ+EJy3ldNRfQQQQAAB\nBBBAYIsLNPsjdvbomv3NUdxwrVaY9b8CHLfSpG+MQP/oqod7uxZ+PgiSHy18hXfljAP9kHHg\nL187vOKmyglZigACCCCAAAIIIDDdAs0+QPp/AjykBsRPah0GSDXAsUpeYCC94jP6XaMDgsB7\nVaVBUv7ROve3geEBa6sEBBBAAAEEEEAAgS0s0OwDpOPl+wvFIxXtq75/pFhN+Fc1iUiDQAUB\nfyC97HU9nYvfp++z+5QeubNvKEzmvs47cL79TpI9hucF3tf6h1d/3Lkb7HeTCAgggAACCCCA\nAAJbWKCW7yLewkWOvXn7sc6rFZ+leITiPxRnWgi/xc6+5nl4phWO8tQnMNf19aY6216lHzs6\n0gvc9kHCPREE/g3jvnfRyMiyR+vLnbURQAABBBBAAIEtLmA/bTOu+DxFnsLa4rujugI8U8ls\np11TXfLNnsoGSLqh4Do3+5bZIAIIIIAAAggggAAC9QnYAMn6svbU1qwPMb9pa9bW9zaV/COK\n9oUN8X+fZtZWm4IjgAACCCCAAAIIIIAAArNPgDtIs2+fUWIEEEAAAQQQQACBvAB3kGgJCCCA\nAAIIIIAAAggggEAzCmwtj9g1476jTggggAACCCCAAAIIINBgAQZIDQYlOwQQQAABBBBAAAEE\nEJi9AgyQZu++o+QIIIAAAggggAACCCDQYAEGSA0GJTsEEEAAAQQQQAABBBCYvQIMkGbvvqPk\nCCCAAAIIIIAAAggg0GABBkgNBiU7BBBAAAEEEEAAAQQQmL0CDJBm776j5AgggAACCCCAAAII\nINBgAQZIDQYlOwQQQAABBBBAAAEEEJi9AgyQZu++o+QIIIAAAggggAACCCDQYAEGSA0GJTsE\nEEAAAQQQQAABBBCYvQIMkGbvvqPkCCCAAAIIIIAAAggg0GABBkgNBiU7BBBAAAEEEEAAAQQQ\nmL0CDJBm776j5AgggAACCCCAAAIIINBgAQZIDQYlOwQQQAABBBBAAAEEEJi9AgyQZu++o+QI\nIIAAAggggAACCCDQYAEGSA0GJTsEEEAAAQQQQAABBBCYvQIMkGbvvqPkCCCAAAIIIIAAAggg\n0GABBkgNBiU7BBBAAAEEEEAAAQQQmL0CDJBm776j5AgggAACCCCAAAIIINBgAQZIDQYlOwQQ\nQAABBBBAAAEEEJi9AgyQZu++o+QIIIAAAggggAACCCDQYAEGSA0GJTsEEEAAAQQQQAABBBCY\nvQIMkGbvvqPkCCCAAAIIIIAAAggg0GABBkgNBiU7BBBAAAEEEEAAAQQQmL0CDJBm776j5Agg\ngAACCCCAAAIIINBgAQZIDQYlOwQQQAABBBBAAAEEEJi9AgyQZu++o+QIIIAAAggggAACCCDQ\nYAEGSA0GJTsEEEAAAQQQQAABBBCYvQIMkGbvvqPkCCCAAAIIIIAAAggg0GABBkgNBiU7BBBA\nAAEEEEAAAQQQmL0CDJBm776j5AgggAACCCCAAAIIINBgAQZIDQYlOwQQQAABBBBAAAEEEJi9\nAgyQZu++o+QIIIAAAggggAACCCDQYAEGSA0GJTsEEEAAAQQQQAABBBCYvQIMkGbvvqPkCCCA\nAAIIIIAAAggg0GABBkgNBiU7BBBAAAEEEEAAAQQQmL0CDJBm776j5AgggAACCCCAAAIIINBg\nAQZIDQYlOwQQQAABBBBAAAEEEJi9AgyQZu++o+QIIIAAAggggAACCCDQYAEGSA0GJTsEEEAA\nAQQQQAABBBCYvQIMkGbvvqPkCCCAAAIIIIAAAggg0GABBkgNBiU7BBBAAAEEEEAAAQQQmL0C\nDJBm776j5AgggAACCCCAAAIIINBgAQZIDQYlOwQQQAABBBBAAAEEEJi9AqnZW3RK3jwCR6fm\ndWx/iOdSOwYJLz3pT94xMnL+I81Tvzg1ObGjt33eIX7K39YFbtBPT9663q0aiJPD1pG2r6un\nO3VI4JLbeM71e0PBPwfc8vWl6x5pX14wnPIn7ugfXfVw6bSbY+6Szp5uX2UPVPbEQDCUvmWt\nu3htnC3Pcwt7vC53oPNcTyKTeGJgdN1Nzl06UimP7u7T921x3gtdNrGdc/5jk9nE1UPjy/5V\naZ3IMq+n8/QDXZDY1fPcRDabuGvd2NL7IsunYbKvdUH7nGdlU9ntdSysz7jkben00ser39Ch\nLXM79j0k4bwd8ueV4PaRkWWPVr9+rSkrb7e3a9H+gR/s7nkJfzIzee/Q+AV31rqlmbTegq5T\n9/P95B7OeUEm66leVbetqqoxr+3UpydTyb2CIJHSJh4YHF5+q1YMqlq5RKKurr5tU67tmc7z\n5yUy3mMDowP/cO7y8RJJS87q6Fi8Q0vC28/zgy7fBY+uH7lDx+ANkyUT1z4zMb/jtIM917Kz\n5wVjfta/c+3YivvD7Oa2LXxGKuX2zJkkvPsH00vNhIAAAg0QUN+CMAMEzlQZzlXsUhyeAeXZ\nLEWY6/p6U11zztaJ/836UO0KAmcfLkl95nkKNwa+/5GB4eVXbpbCbOGNzJ+zcLdkKvE5fdr3\nqSgt8sjIQRcwPF+vv8/67kPrRpbduIWLucU339126t4tLakvOJc4seBTcHJZL/AuDzz/QwPp\n5autoDaISHYnPqKT3Nui7Usd/IS6Vf8IgkDta9kVm6tSuQ5eS4vK7r1KZY/sY5fVQOcqdZo/\nqE7fLZXKM79z4SEJL/FF5XGM8tATAGE7yR07F/qZzEfWjp2/5qk8jk71dO30FnXGPyeH+TZf\n9c4dYIXpwcD5Hx1MT+r8syr71Hrh1IkdC7rm/lfgJd6j9Xu1qrzt8Mwdp3f5fvBJlXmlZRuu\nUe9rZ2ff9m1e2ye1vf/QptqfOi9YzsFfAi/7wcGhldeU2063e82Clq5OnVfcm1TW4vPKDXK2\n/X5VufVrnT/Fdm/0g+CvGqydrH29fd4xJ5lS/R7QYf7ZgaGJH5XeB7WWaHOsd2jLgq59dXwl\nPqx67VBUr4fUtj43mJ74fh318tTmFycTyU+oNk+Xldporv3KLXgy8IKvDg49/A3n/jhWbW17\n208/0iWTdgw9v7BOVm2lRS14VHmuGAsyH690gW5B58JjXSL5BaU9VHlYu8+v74K0yvfDyfTw\nZ4bcRf3Vlqd0ur6u3q62D6j9n2XHbeEYSNhxp+3erjb8ey+ZeKWW7a73dtzaMZ1SHR4PAv9L\nA8MD344z2CtdBuYiEFugVWvYRYbnKV4Xe+0ZtoKOL8IMENjqBkjW0Ut6CXVOvfn6YG0r3gf5\nk74+DrzgmwNDy96r5Q3rgBVva0u/7+lYdHwikfi57iik9CFnJ5iNQvjhKIB36Qrh/260cCt6\n09u1RIPHYJlVuYzTRG5RELzZd9mbEl7KBj+9pduXdbRyvZv/lem7Na2B6PSFBd2LXqPxzArt\nY3Vyyu3jwNr7WweGlqujvGno6Vr8diX4lpb4uQ5dURIdMxM6oWd93/UNjiz71Xz36vmJru5f\nK9nhSl/2cWq1L9Xdv85PD58QvZPV0963q5ec8xuZ71m6zFpT2xPjJQPpBxfF6aQWFX3D257u\nRc9XUS9Tt7O99H7LDdBUF/9TGgh/esOKhQldbX9WMtFi+31emfWtvOb8DZ1X3qd0DTmvzOtY\n/OxUwru8wnZz25Fjyc9cO8a14E9+euzkQbdqXaE6M/olNyDs7rxMXfNnq1abnLes8PlzV6C2\nlX5VtG1VV7ETO3o6552vvI9X+mQpO2vz2p93etmxl1dzV3hB95IPq0yfVcl0DGlAURwCN65B\n17gfZE9am155ddFir7d7yZfVYv7Laqb1dTGvKGh9zVmX8YPja72gNbdt8V6pVnelLvjsWKYN\nT9GW7Dzg3TYWjL1ieHjVv4tKyFsEplOAAdJ06m6leW9VA6RcxyvVdpM+aOaW/JCJNIL8B6z/\nRXWGzo7MbprJBe1LDg+S7k/6wLXBUcnOU1hZWegitP96XbHPDRLC+VvDq121DbzkFRLatFNS\nBGBO6lik1YfpEOmmnaBIemtfXhB8rX942Ycisxs6Ob/r9BclXPJ3U7V126iV3XPZvv70il9E\nC9HTufh0rb9M9S870Mmvrxx0VynIZl7iJZP/rekjp1on3K62fs1AevwldrW/1y2a63UnblRu\n9kid7naVD/lOqrt4IL3s1PKppl5ijwC2BqkbVIG2qfaztpnR+eODuhP0tTBnuwubaEnqvBJ0\nT2Vt+13rfWEgvfQT4fq1vsbZbsVt5DvXf+5Pj72sjjsuFTfRuIV9rb3dc/4k60NkXXJwtGFb\nNuhwwd8G0g+pbf1RdyCrCl5P15JfqLEfX2qQEM2hcGHgvv70+GFyS0eXRaeV3zs8F3yzirah\nY9AGScHh0Tu6ukDzKeX34SqOB90R9ob8yewh0cfhomUpN124C6lH9bztptpOuTxsfuGY/JeO\n58NlMlopLcsQaKBAUw2QKn7YNhCNrBDYIOCl5nxHVx07p/qgshXyHxKJj+jvHw7akEHTTPQl\nXcruiOTuKlQcHBUsEnq86nvqSG7TNARVVeT4NucllyrplEb57HQnJt9Jrjg4srTWvnQp+P12\nByC/bqP/72vV4Ej7WFuqIihVQo+z/cgGKGFyexQ1kXDn2rJwXrlXHVO2naQGRxdpm0dUs47l\nVUj3/J6utrfk8u72PqkBiP7uofLgKL+udZC9U+Z3L351bt0a/2txyfPUkW7VNqccBKua+jsU\n98V5c5bsEW4u0ZL4rsoc47ziPtbTuejAcP1aX+Nst+I2dCddg8OjNPB4U8V0M2Bhb2frWVUN\njqysuScEvMPtUc9qi97btbhPB/EJUw2OctnnBmje7gs653y0XP697aftogPja1V+5iS0H/Tn\nRYmfhPlpcHWApj9W5fGQtHaYaxdhBlW+tnR2flF3f7atZjuVslQ9W5XP3rnH9ColZBkCCJQV\nmPIDt+yaLECgBgG7SqwPqlfoA8CuNFQbsgkv+YFqE8+WdPO7W07Qlezdq/nQjtQp2Rok3hp5\n3/STCzp7T1PHuVdtpqrzlTxzIQZMNplw03IHqaez9bXqIdrV4KrKbmXWozVzXKd7Y1j+ZHfr\nW3RBoeJdnDBtbv38thZom1MONDZez0vq2PyY/gyuS9t7RzWd08j6et7I07q1hdzfhQT2KGDl\nO35FufvJlG+PRzr7ggB1CF+uOlftpNWyuuJQ13nFvnChhu0WVeOpt7nyB7YPZnRIuERCd1Km\nuHMUqYLqpQsFiTj1sicGqm+/NgjznNpCX3tks09NplL2tzwa91QXrB0q8cF29ze3huesnejx\nzOqC7UdrF9Y+qlvDudyFL897Q8zjrnz2MlE93u/coXGOifL5sQSBrUyg6g/trcyF6k6TQIuf\nfIU+psbiZJ/rNHjeSXHWmQ1pE0HiBOsOxypr/mrsybHWmeWJdYdHX2oQq+Mcq8aFzswrtZL6\nUI0N6qBoH9uXKVQf7C6Kbum8Jlyj8If9m/ydXri81Ku2W1NdtNqOPV2tr49bZm0tocd6nm2P\nCJUqz1TzgmRKf3DuVf0NYpafymp3rnLHQhC0vFJ3NGKfV3Tw6cs+6giBp/NZvO1OtTVZ7tLd\ntnifqdJtqeXzOk57turcG3v7+hKH3q7TnznVevYlHdq3ByjGasM6blI9Ha1Hl8n/lLgDD218\nUhfm7LygVYOTVJp4Aw21C/2lUm79MmXaaHbKTx6n4y6z0cw63+gCXPv8rv3CL6OoMzdWR2Dr\nEoj1wb110VDb6RDQN9btaR9kNeTd3eP65tWw3gxexds39oeuaqMHyPaYwZWahqJ5e8tpes9V\nnuvQFdyaOveVKqxOv/ZxiT/mrrCSdQzVOdsrTKJO1p7h9HS/apCT1bb1tcK5v9GJtTkrdqKj\nffdYKxUSqwP6dPVC58Rf19tB69i3e+m84mKfV7R/dE45qTv+dvNr1LrdStvTPsikksFm2+eV\nylJqWTKR2lNu9oUosYI665OBn5qyXm1+qqbzW67NJhKl8w+8nWMV1hLrYpSOvWdY+8i3k3g5\nWHtMeK7qulhbUh2qvktVTWl0XI0n9JlbTVrSIIDAxgKJjd/yDoHpFvBqbnO+Hguf7tJt3vzj\n3VmIlK3JHCI1Kz25WeobBKmGb0cXA2rMU92lMKh3Fk5uhlcrcvWPNhUVKHA1H981OplNn92G\ntfVrcupxbbVu257Zqnm7RXRFb2t2LMqn8W/r2McuSGantNZhaHcjRRs/6Pv7y7WBcvMrbkR/\njJSso32E7bLiNiILZRM57iML6pucuW2pvnqxNgLTKzDlyWp6N0/uW5uAvlt1jT6p7Buk4oXA\njaxzKwbjrTTDU3venXa1OHYpA+/+2OvM4hXUy7hb3aVp/Rpue+xTP0L6xDQw3VVL2dU7XBOW\nRfXfbPtbN4F0FyZ7qzrBse/GWHn9RKKmsqqO92kfxHrEzranc4l+OHZVVl/NbOeV2Hc1dD82\nXc/Xahe2G/98ZoUvE2wfeInsmjKLt/hsL+uv0Sg6zt+Q5sqsrn+LGsiU9UpkJtbIQLszXtAx\n0+L75c6NwaPxclPL0FeIB4ng7nz7CMp+O165fFWBSWsf5ZYXz9e3aVra2PUuzif6Xsdxq+f7\nli8BAQRiCjBAiglG8joF/MwVukhW+g9py2Rtgwh9INtvjDRXCJx+o0Zdwzgh34m8OM4qsz2t\n7sFcZp2N6apHfpAaXKn84+2LKgqkL1z4lbKNNwi2r0X2gl+G2avt/zLu4EF1qq0ugXvCHx45\nT2WO1VGz7WmLt2mQqQFL/JD1sperwLH+xkMbnMjZaHP64czaziuBq+u8UthuDY8GVjAKgscG\n0itvq5Biiy4aGJ24Xt34obiF0P56cu3wspunWq/we0Z3TpVu0+VeMDgy9odN59uc4GJrL6WX\nlZurR2OtXdnaOlcrxjsHed6cXPsol33R/NHAu7KWgWdRNhu9tfNm//Aj12w0kzcIIFCVAAOk\nqphI1CiBweGVN6uzd3XMD5ukl/W+3KgyzJR8BtJj6gQHj8ki1t2RMT/47kypw+Yox8CQW67u\n+nCcbakzFGeAkPS94Etx8q82bf/w2AV6Qm5drPJ4LpMZGv5BuI3xYPx7mq66PoVtDek11t8z\nKH1Gv7P1xfwPegbnxRyUZbXu58Myx33Vj3L+n9a5NV6ZdafFTX7TtrV2eMVNWvdPcc8r+kHP\nus4r+e26a2JutyyP6jChqN+vmslhVVZt4ytx2ofVS+m/qFpV145994VYpvnfWtJxUvp3kDKT\nuR9YrvrRUZXXjp27BoaX/9b2hNrJV1T0qu+qWtkVr7H2YetXE0ZGltldrgtyVtWsMFUau5gW\n+P/TiB9wnmpTLEegGQUYIDXjXp3hdZqYDN6qByjUEZh6YKA0dpX4nP7RpX+d4dWqoXirJtSr\nPEMrVtVpsA9t3/nvKXyQ1rC92brK0mHP+W+upr1YDS2drpzqG6SqaV+5q8rfHxxa/ufp0Vk1\n6vvBG6q9U6gyZ1Xqdw65i/rD8gwPr/q39vt/5ZaFMyu+en7g+6drm7dVY2BZWTqZ3TIwPPEt\nez/p+R/RcdevNjf13a/cXU3vd/pRzZW2bo1BjducnA4JlWaKoBR2Nf+z/ekLbg+TTnrZt6gO\n1jGd8oKD0uhuQvCt9SPLrw/Xr/V10sucWe12K21D1Z7Q3fWbtQ/OqZRuJiwbSK/7qtrHPbky\nT1EgS6OLBLcNDPfn2tYUyXOL+4eX/lSm+iHaqR+7tLagBvO4n/Y/Xi7v9ePL7tZnzscL7aZc\nstx8lVfZeb6XdWdoRq4t5dtJ8K18u6m4engsTVq7qJxy06Vjfua9mrteRYh1caM4p5yJFzwc\nDLvPFS/jPQIIVCfAAKk6J1I1UGBofNm/fBfoF9IDu8pd8rEH+5BSyOjOwQWD6Ydzv3XSwCLM\nmKzWDS//neq5xD547UOtVMG0XJ1G+6AOPj2YXj7jO0+l6lDvvP6h5RfpsZ63y0EWpTvtufZi\nTkHwHnUvjlX69eU6WEprwTr/vxhI3/7OestXaf3BkWW/Upk0wMvtx8r7OAg+pM7hj4vz037/\nrgaJn7B2YPkUL7f31n7yMXj94MiKX48HY8dp7h22Tqn04bz88mD1WJA9Xlfgc8fj0NDKJzXg\nOEZp/l3O0NbXupb+WnWY++ytzas1rBtZdqNyeJU606OqY5nzgtVfbcC57w6kl34yui2V+Y6s\nUx28IF1+fS3JnVeC8wfSE++Jrl/rdLhddcCn2m5ZHyuvBgS3TgRjrwj3Qa3l2TzrXTriZcdf\npoHEPZXbR24/3j4WZNS2Lh+PUTbfT4+dLLDrzabsejaA8oJHMpPZY6b6G9X+oWWfV1ob5Fgb\nKnlM5PeDNxb47pTii3K59uIFK3PtR/+VKlNufbUDa4fWLkqlqTRvZOT8R/zAHau28OQUriW3\nn8tbJmqLD2QnvWMH3PL1lbbHMgQQKC9Q9S3n8lmwpAEChyoP+z0Oe0SlZAeqAduYUVmMTdz8\nQHvywGX6acod9FGzvwqnsVDud1B8dWxTupJ6v+a/czC97DP6e/WSH2YzqkJ1FGZs8uZb57Qe\nfLG+knVvdTj2EIV91fK4/sBWPwHk9OOd3j/VI16yNr3sx3VsZtavOjpx8w2tqf1/rV+4t/ay\nq6wyMtMdRgnZj6J67m8umz11YGTFz0czNz/YkdxnmZ9Mbq+WpfS5VNZBy7cv5z2o9nXW4PCy\nTzj36LS3r9HJm29qS+1/qX5XZT9ded89X/bcle/8PvbcDYGXPX0wveL8cjtqdOKWP7W1HvR/\nuqp1sCpsx81kvv6quf3TszR6zO0U3cnJPRY0Obk6PTrR+6P21rm6O+Qdqe1ucr63diaSzw2k\nH3795ORl66Lbnpi49cnWiQN+7LUmOpXuEPXI9K3FuSv6GqDk8urX9j/anx7/T+cuGouuW+u0\nnO5u9fa7IJFM7q466XgI7M6WjgXtRX1durZ3p++7N+tvWb5RahtjE7fc357cf7mXSO6oMu6n\nNMXnlTWa9Q4NOD/r3OryncxSmVeYN/V23QNa/Xdqp7vqq6P1aGDO0f620trtetXtc/3p/jdP\nTPxy1nRoRzOrh0YndjuvvbXN9s2hao/6cdSwXvp2P10A0/76vNrWm4rbVgXKDYvG3Opxtd+l\n7S3d69Xen6PReHvhM0Ju1hb1O0Oe+3YwNL5wXfaCRzasWGFC55Ar56QOukH74Vkq87b5AZE9\npZA/hlT+X09MTp6ybmzFdZtmszrQ+he3tx54p76s8TCl7SkMYnQHK/dtlXacrQqykycPjqy8\nZdP1q5ujz4PHkq37/CTlEj0q10FWNG3LBom5407vHtP0bzRzB21/zsYmblS3j78xkF6/eDyz\nytIRENicAvYZc7biDxUf2pwbno5t6bgjzAABuxV/rmKXYqy/tZgBZW9AEU7q7u3sep4+83bU\nB2FaHwq3D6aX3tqAjGddFl1dS57W4rvDvaS/rQ7Owcxk4qZ1Y0vvm3UVmeYCd3SctmNrMvGc\nhEtuo1tG/YlM8PeB0eVlTsjR9uWG1Sm6XYOImjsw9VbNfgizJWh7biLpbWtl9zLjNw6OrrIO\ndNVh/pzTdk+2JJ+lY6UnyCaemEy4v1b+goSjU/O7dnyeBlfHaqiotuU9oftnVw2OjV9r3wI3\n9YaPnqP1j0wG3q4aYU74QeaudSPn36D1VITpCfPcwp5EhztSwyINct16PbN0i919rnZrvW7R\nXNfp6byijqTOK/pLktWb48sPKm/30Jae7v2O0COQu+unvXzPz947MJr5W3X7oNqab4l0R6d6\nundQvbw91LYCPaCmeo3/tYH1SixoX3iYn/D20sgrpStID6xN92sQE+uu1EYwc9sWPiPVkjhI\nxZ2nS1KPZUfGr1vvVg1slKjCm/yP3qb218DNPrcf1Znl2sbfselrX9DZ8nznkjtr9KU7W5P/\nWjtyvv1dkx13id72Rc/V0GzPvEn2/rXpjEzyd4ErFJ1FCEyXQKsytguRdt4tcZFhujZLvs0s\nYAMkO+F1NnMlqRsCCCCAAAIIIIBAUwrYAMn6skc2Q+10QZGAAAIIIIAAAggggAACCCBgAgyQ\naAcIIIAAAggggAACCCCAQEGAARJNAQEEEEAAAQQQQAABBBAoCDBAoikggAACCCCAAAIIIIAA\nAgUBBkg0BQQQQAABBBBAAAEEEECgIMAAiaaAAAIIIIAAAggggAACCBQEGCDRFBBAAAEEEEAA\nAQQQQACBggADJJoCAggggAACCCCAAAIIIFAQYIBEU0AAAQQQQAABBBBAAAEECgIMkGgKCCCA\nAAIIIIAAAggggEBBgAESTQEBBBBAAAEEEEAAAQQQKAgwQKIpIIAAAggggAACCCCAAAIFAQZI\nNAUEEEAAAQQQQAABBBBAoCDAAImmgAACCCCAAAIIIIAAAggUBBgg0RQQQAABBBBAAAEEEEAA\ngYIAAySaAgIIIIAAAggggAACCCBQEGCARFNAAAEEEEAAAQQQQAABBAoCDJBoCggggAACCCCA\nAAIIIIBAQYABEk0BAQQQQAABBBBAAAEEECgIMECiKSCAAAIIIIAAAggggAACBQEGSDQFBBBA\nAAEEEEAAAQQQQKAgwACJpoAAAggggAACCCCAAAIIFAQYINEUEEAAAQQQQAABBBBAAIGCAAMk\nmgICCCCAAAIIIIAAAgggUBBggERTQAABBBBAAAEEEEAAAQQKAgyQaAoIIIAAAggggAACCCCA\nQEGAARJNAQEEEEAAAQQQQAABBBAoCDBAoikggAACCCCAAAIIIIAAAgUBBkg0BQQQQAABBBBA\nAAEEEECgIMAAiaaAAAIIIIAAAggggAACCBQEGCDRFBBAAAEEEEAAAQQQQACBggADJJoCAggg\ngAACCCCAAAIIIFAQYIBEU0AAAQQQQAABBBBAAAEECgIMkGgKCCCAAAIIIIAAAggggEBBgAES\nTQEBBBBAAAEEEEAAAQQQKAgwQKIpIIAAAggggAACCCCAAAIFAQZINAUEEEAAAQQQQAABBBBA\noCDAAImmgAACCCCAAAIIIIAAAggUBBgg0RQQQAABBBBAAAEEEEAAgYIAAySaAgIIIIAAAggg\ngAACCCBQEGCARFNAAAEEEEAAAQQQQAABBAoCDJBoCggggAACCCCAAAIIIIBAQYABEk0BAQQQ\nQAABBBBAAAEEECgIMECiKSCAAAIIIIAAAggggAACBQEGSDQFBBBAAAEEEEAAAQQQQKAgwACJ\npoAAAggggAACCCCAAAIIFAQYINEUEEAAAQQQQAABBBBAAIGCQAoJBJpFYG7Houe0JL2XBoHb\nNXDeRML5d2UyicvWjS29bybXsbv79G1a/dQJQSI40AVurnPBv10QrHNeQtPe9s4LhjTvtokg\ncVk6vfTxaF16Ok8/yLnU+xJe8EzVuSPQugkX/KI//fB3nPtjxtLOd6+e73V2nuAlvIOV//zA\nuced7/95cGTyt86tmojmt7mm53cuPthLuJcnAreb71zWC7x7JzMTvxoav+DOUmXo6Tj9xISX\nekvgBbvZcqW/PxsE3187suySovTegvYlz3VJ/1h57CK38cAl5OecXHrsVe3jPmXw64H08tX2\nfuPQ19rT0XqMSySe77lgO+e5tYEf/NMfDn61zq0Y3Djt5nk3r+O0w5KJlkXa2uGKnYrrtZ8f\n8ayteG57aahqwYNyvHDt8Pgq7dN0qZL1dC05QOmOT3jenr4L9vWc20npOrR+UnVN+4H7q3J6\nRG1kZxd4eyvvFmk9pvdX+r5/byKZUFvzdtQ8P/Bcu/Ia9QSl94/4LvuHtenMNbbd+V1tR2nm\n0bm0XmBlWT3uZy8dHl75mC0vDp1qw20u8S4vkTg4CIJ27bcntM3rgsDPJBLeCSrnDlZHlfkR\nbeuywXTwVVfYFx0dp+3Ylkid6DlvXy1TXdwjKtvvB4eW/VnTIikf5rmFPV6nOyGRUL1yx4X3\nmBcE1wwMj/8+PC7mdSw8NJVMvkzLd/WDoMPzvC5tR0XyttWrXWB8xPPcPzLZzJXrRs7/e/mt\nbbpkQftCtVOdr9ROVdCkMus0U+d5snXz5D+u13bl367lg4kguDPwvBsG0usvd+6SXJveNNf6\n5vR2nf5MFySP1zb3sJzKHSvz5izZI5XyT/Bd4hlqO61K/0B20l3rJYMjZHS8Vt1W5R8W1T8m\nJia+3pr00kEyZftyHy1rV3zIZbO/HRhd+RfbjGJR6EvO72p5YcIlj9aCHXS8qh15Oge6S1td\nZtsgSL4i4bndbSX56Txnu9pr0zs73u8MMtnL1o6tuN+Wh+Gp9m91UxvWecDzMr/uT19w+4L2\nvp38ROt/qOzHKv1O5p4/73p3at7145OZa1uSiZ10Dj1Ey3ry59DgusGRgaucu3w83Eb9ryd1\n93bNPV7t8FD5ycqbr3KO6rx3T8J5d2QzGdXr/DX1b6cZc+hrn9/d8rKknzxCXtvIcEB2/8rq\n3JFMyrJwjOc/+yZ+lz/Gj53X27X9e6VxjKx7Zb5e6f4ymh770qhb9XB5paPnzO/Y+WWel2vv\n1tYHdbDc4NLu8gG3fH359Sov6ezs274t0XaCUu2vY8fONTq3uj+uTY//SeXNVl6bpY0W8Bqd\nIfnVJHCm1jpXUQeEPlQIsQTmdSx+dirpnavO1bPVUdIHZKCOneercWc1rQ9N72cTbuysdHrV\nE7EynvbEx7ct6FzwKXV6/ss+5vPBK1y0sE6YBXWDXZBRvXSuVx/fC749MPTQRzrdDvPaupL6\ncHYH5JJt8p83KY+P6QTerk7sh3Pr5rbhpZSx+hlBi17Hmfv+AABAAElEQVT7fee9azC99PxN\nVp+mGQu6Tt0vcK3nqkP1AhVnTOXI1Vf1y+hDZo76OZcGvv//BkaXP2RFmD/n9BclUqkLlX6B\n6hMi5Uqnjouh9PuZzClrx1ZenR9IpH6ghQepbsrbtcpPwalvaevmLK1daFveHM35bTaTfeu6\nsRX3Woa9XYtOVTm+qQ7XNkozmV8/yA0yNV/jh+C/B9IPfS4ceOYKMY3/5QaRnvupynJgvq6l\n6r/xPBVnUq4fHRhepkFEvlHNbVv4jJaW5Pfk+2KlntTsVJhf+GrViE7b+xJBH9AaQuUGCE8t\nVfl0zHmyDv6taSF726nTrDaWm1dou0FSy89R5/7Dzl06YmvPn7Nwt0QqeYn2z0Gl9+3GdVM6\n67AraLd7/goNkpWP9ybNzmi2lUt9ZrV77Xdt/66sy751bXrl1bbGxuHoVG/XLmdrvQ9qn+rF\nQnhcODsuntB2vqIc+7TB5ypPa6dzQh+9anauIAUz650rH8/9XQPJt6wdXnFTPs/S/9ugK5lI\nWDs9WNsK7QrlKL1Ofm6h/Xpq2777hPbx1zU/X5BKq1WxbF7bqU9PtrR8T3U7RpUbVaY6h0pl\nw7ESXJnN+G/PpiaHWt2cb2mzr1OFVXZn+1X2Ot96diw/ZRNudoNbJL3ytf1k5+bVLps5UwOl\n68L0vZ0Lj3OJ5HdUs92UTu3IjuMN58AW8euCQO74Vhlzg9RI2/XU3uy8rzbgBSsmhobf7bW1\n94btP7/exucc7Us719jFglx4qp1tmKPsrJ3kz8V6tXOoyh/owoI36Af+ewaHly8LU9f46vV2\nLnqPBmCfVNOao21scpxpns5FubKfP+ll/3NoaOWTNW6r6Vbr7V7yJlXqS2q7c7VPbP9b27BR\ns9pnLuTOXYX2pGM8eFLnp1u05CX5fVtIFX3x3BUDQ8tO1KyNBia93YveqNPNl6PbyrcHp2tP\nbsL3g08NDi/7itZTMaoNJ3b0dM3/b5Xr7fny59qb2lnhPOoFazzff2v/8IrfVpvjFkqnY1UX\ndpx7nuKGY3oLlaXuzWq/EmaAwJkqAwOkGnZET8eSE71E8HOtqpNTOLjYOCN9AE6ooT+ZmZx8\n4brxC+7ZeOmWetfX1dvd9nudQg9Wue2kUl0IrEMV3KOT6NP1qk6AfZxvGp7qcKobaR2KMkEf\nxroR4748OLxUHdfpDfO7Fh+ddN6v7MNLZcp1wIq3aPtKvZ0hDZJerF7QoYGX+JGlmaqeuh78\nbd2BeJs+k6wdhB+Kxdlv9F71nlQ5Rl0m+1I/mXiVTD9U2SrXjq7rTz/0cg2SxjbKrMFvejoW\nvkL1uUjZykqlihFULw3m/EsH0xOn9La3Ha6j4jcaUbSVM4+RdcWkYZsrW958270rm/Zf6HX4\nu+uu2HWV2nCljeW3Vb5tm4HW14Vk9+b+4aU/fiqvo+f0du18pd4frnKWPO7CeqjVVTx2nsoz\nP6X1smpDGd/Pnjw4suLXxcvt/fzuxa9OBN4FKlpS26+qnZbKx9qu7H41mB5/bb1XlnXH9XCX\nclcqT7tbVea4zB0rY4UBxrxydqXKWmmemWm5Nu0tsQs1C7oWnaU7QN+wdSodi5XyDJcp7wlN\nr1VZO7UBu8tVpm46OhTC9eK+Km/dpAj+R53p98RdN5++L9nTNedCFeAV5coYzbdQryc1YD0q\nvLgTXb61Tfd2Lf6u6vwm7UIN0KsPcqy433PLdTe7P/3kruFdwgVdi8/R59eZlbal9jCp884V\n/cMPnlzNxbS5rq831TXnau3/Z+j6gi4abBqUp53PdPgF7xxML9PTITM2MECasbumtoLZDt1P\n8W7FLXX3hgFSDftOV/z3V9//Bp1UdMWtcsidtPQYSP/Q2IHqUIxWTj39S3Wi/aW6AMeVOyFW\nKoGduG15PR/q0fyVmz7g/bcMDC3PDUaiyxo1bXcLki3JW7StTnUCyg7YbHuqnq4C+4OBSy7Q\nO6tmxc5LPR5aN6vcR/VRaZ3DKTusSj+hEl0wOLT0PxplU5xPd9vifVpbvH/owzB316J4eTXv\n5awL28F39fDcQn2qzp3KvJo8G5ImN0hy1yuvg7Vvu6bat/Vu09p24GWOHhxaeY3lpeNumQ6e\nPm235OCo/u2pJemO04SXebau8N8Rza+nc5HdCfx7o7atuuluYfAN3Un6QHQ7cabzj/TMuU1t\nZP5UbaSe42yqMinvjO/89+qRuq9PVY6p8ooun84yF21HdzGDswbTy62zHivo7sdX5H+W6l11\nm7R9r7sLa3SxRo+9Tu/FmliV2cyJezsXv0efoV/UMRVrcFRtMQvt55aB9LKDdYfv3frQ/XI1\n29L+0eA8+I7We/dU21rQteSPSnNENX0B5asnjYOX65i3p0dmYmiqAVLFjspM1K+xTKdqvW8r\nflBxr0IeXXrVlTxnt6ntkQh7bvSnivMUCbNCwPsfdXam7NRaVfTh06KT3S493W3/uaWrphPt\ny3TF9IRqToilyqoTdC6UWlbLPNnI0Pt6r1s0t5b1q1knkUp8Sf52F2PKc44ql6p2cGTbNoxq\nylAqjVZN6kPHBm1VtiOvVQ94Lc5ddS+VYQPmtbS6b6hdl707WM0mzFmP67xNHS/93czU5tXk\n2ZA0+Sukz9scg6N8eXWkBXq8UM2kt33x8+S6UPu86o5o3DpbW9Q2Ui1B8pvF62qH6NG02ttq\ncX7KqUXZvae77dS9i5dV+77Nm/NpFXjKixaWn9XNQrV5x02XdMkv2QWRuOtVSp8v8fSVOdy2\ntpPSresv29+1hfOqebWLITpG360SxmqTtu/Vznbr6dz5rGq204xp9LeL28n9c2Y/XfWz9qO8\nD5w/Z7H+Pi3x+Wq3ld+f3ln2SHmlsuki72s1sH5BrL5AwmkQ3lfV51WlbbNsaoEpOytTZzGj\nU1j9dKXena/4DsX/VrSrl7pl6uz57dcV3p+r1xsUlyheptjQk7TyIzRYoKe9b1edrI6xD4pq\ns1b6Vj3essU/UPTY2NvVEdDn2wwKeu7d60zokYDGh3ynwTvF/KvNXfvVHpWr+jiMk7a4DPHX\n9TJBKnhrcT6NeG9fOqAO03GqeQM+AO3uW7yOVyPqMHUeU98VnDqP6lIIwBz30xciPEd/efU2\nTW/09wTV5RIvlcztnPRS+8P/cE37UgN9qryosCycXferDpBMa6rljbVl1Ke/T3T/EatzVtuG\nplxL+yll5Yh/LE6Z9eZLEHgtye5kX5wNtqaCN9o+jLNOmFZWdhFli3+eheXZ3K/6YpfTtc2q\nPyPqKV8i5T4Xd1sq2GTgtb6p0nb1MWf90qr74Tp/6Mlzb3f7IpxK+bKsMQJV75jGbG6z52KP\nrp2kaH/YZq/WGAcVf6doDddOZscoWmfnuYpnK75A8TRFwgwWSCTajlZH0v4YMF7w3E42uIq3\nUmNT6yT3En2wWcdtBgV1UBL2B6uND4kO7/kzbkBYRzWtk6u/TnlZHVmUXbXNSx6thTV1mIoz\nnamdzc1dLnVUxvxU4sX6xsSXatvTdrU56q/H7Cb0rWgvCuclW/wX63w1Fr5v2KsGFbrn8vJa\n8pvflXqurtLYYG5GhPBxuBlRmBoKkbMMAutPVB10qeD4egaoOhftEh2IV73hZkiYSOgbIIOq\nL7rVWuX8+crbUdsq+fdBZfO1u+X61tCyyzW4s7tHcc+HOp/pG3q9F1fIl0UNEtgsHxYNKmst\n2bxKKw0onqgYfjg9pGm7q2R/RGt/3B8Nn9ebtyjaIGlldEHM6d2U3gZh1R68nTHz3+qT+4lg\nR3V4/FouIOmi+o4CfGDLIPbpG7bsq7xnVtAHrX3Tm7XbhgcvmdhRj6VNKuOmOd+oM7Rtw6GU\nodrGDnpR9oRGCeghu5Ta3w7qjOjbCSW8WUKgb0u0r0TPBy9IaNruGjd++9qOtZnYQY8e7qjj\n3o7LeB2/2FvaOlbInUOdt3uc2mrfbR8nfam0k17u8+zhUsuaep6+ej/u4KJ2jxrvenveduW2\n2dXVt00tF2x0ErF+ZU3HfLmyML+0QNN0WEpXz+2m+b9XDAdHlswGLupYu9X2pijY/PsUdy2a\nH/ftI1rhY4rVXp07WmnfqEioUkCPyul3MWoLQTJR87q1bTG61ip9/fbiTC0nxmgu0zGtuyL2\nd3gND/pGurSe3258z7DhJY2Roaffq5mGoLsBw/Zd7tOQ9VabpRpeVif2YbVA+xywvz3dLEFf\nobfhPKPfdNIxMD2HgLWZmiqkc6jWbbIDsyaJxq0U5P6Wuer81EZG6h20pxI17v+qSzljEw7N\n2JKFBbPfNSsT0mmXbusus7Dy7KwW13bMV86XpUUCzT5AsrsEdst7jmI4SLJbngnF/RWLg3k8\nW/HHxQtivrercufHWMfKxwApBph+yGa1nlFri9vl0DXcicH02ntjbKrRSdUn8e5Wpvs2OuO6\n8tPjP74X3FxXHmVW1hfF3a7rb9pXcfdWmQxnxGzvjukohu5yrNboyH6Lh9AgAXna7+as1rcM\n2D47rEHZVsxGd63a9AV6t0cSab/qb0YiMxoxqbu+9psv9nsusYOfnVidSrZWexEvdv5b3Qr2\nyLcXVPwNrGIT/XrUzfpA2MXuPhUvq+a99v/EQHrivmrSNlsafYvfTfrOyENlV+2TOjUR2KOf\nOm7H9GJfzV/1ttTX0M8MehU+U/VtusHiR5Um1t0glUU/1O2XusBfU/1YqbxATQdl+exm3BJ7\nlM6+VcYep3uN4ocV7TcW7CRmA6WFimEwi+8r2hXGPyoSZrDAuvTqP+nDKNYVJJ2w7Gtxrwp/\nqHJLVU/nzZXqsI1vqe2X2q49X+377sJSy+qdt3bk/H8oj4ftg6bavCythWrT15Mu9nZs3/lB\nPY/gli3u2vTknzWOXFs2QYwFOcDNZBijWPagmR/bPM4GSqT1h/1f62vPN99xp324Np25JizK\nwPDEH9WRm4arvp597e8F4XbivNpvwmlf3GH7I856pC0toJNVi35T7Rell5aeq51n+87uCMQO\n2m/6qm93xUz42YrYhW/ACpkgsM+rzfK3vLrT90c9Hht3W1n9vHjFY1Mjr9jnJH1WJ8f9iUsb\nQEgWUwg0+wDpXNXfBkkvVrQT1+cV7QrAyxV/oLhc8a+KdqA9qHiGojrQ09NRVL6EhgncMKmP\n9U/oQ2IiRpZJP8icHSP9tCT108P/oxPjeB2dxIYOHFQO/Tiru2LdyLIbp6XCylQPjX1ULzE6\nAvEeM6vDMldlrT9ZTd3V3qwO6waG132/mvTx06yyH+79uMqTib/uU2uYhzpPj2nOjOv8qlxV\nWT9Vm9qnxDChvz/6+jq3YnBg2PueOhdD8p1WE+WvH4oMPrHxD7iumtCjpp/Wsjjnq4oVtzai\nQdcDg8MTFTthlTLRXWO7aNjQ80ml7ZVbZvtJpbhhpl04Klfe4vm58rvgjwOjK68rXlbp/eDw\nQxfo5Pig7ctK6cosS+r24cfLLGv62euGl/9Odtfb8TZdldV+sWMjOzB07yn6jPxrfj9PvbXc\n/vTcw/3DD62olHrcH/+yDr/qz0e6OKcCfXd4eNW/K+XLssYINPsAyRreqxVPVvyK4v9TfJai\ndRw+oPgTxT0VbbndafqWon2xA2EWCOjH0mx//aGak5adsHQV6COFuxlbtHZr3cVrdQ39VBs2\nWIhTmNwKWqWa9QppK+ZvHy569G1g3M++IU454qbtH172U9X3QpVpyg5irkxB7njV1e2pfXJp\n7Op8DXfllLv98OsyGTw5VdmUVucT/TWJlzllOu9CDqaXnqPHLq5UeWIMKJ/aI+ah+kzo+Y6X\nyuSnVsenlm7ZKTNU610kxvOsnLWWpqp11R40GLu1f7j/E/ntLB32Xfa11iHJ78vyW68q/1Kr\nWxv03FX96WXnFC/WXSR7euH/ammnxXmpfPoxZTfp+76ejFhVUzuxPNcOLbtYLz+qpo0ojQ3e\nq+/MFRe63Pucmff3geH0S7Vv1qhuDWuvVl6zKrfpRszXNuwcum7MzyyJn98fM4GffY3W1w2R\n6o/3XJ2C4INrh5f9M/42m2cNf9I/TcfbsO2DuLWSYcXzT7hcqc5w7rrRIDN2ejXb0npZ7c+s\nr/2qh5Eqtj0b6OjR29drG1MfVzpOdO68ZzC97oNx60r62gSafYAUqlykifcrfkfx4cJMe4zl\nDMXtFG2QZH8u95+Ko4qE2SHgD6QftAGwOt65D8JNOgo6WU1oWVa/HfCBwaFlX5wp1dLg7gp9\nMJ6Ye+zGOgibhk1P3kqnE++o7/mv0cL/tRO4heJV83M133NpxaFyHTKl0IdKcFc2kz1ieHil\nXTSY1jCQXm0diPMK5dvkg8PKo2iDkM/1Dy/9kH6F/ECV/watk1uluHA205ZZmoGhh+xbyi61\n9TV7k3aw6bq2LaX23LcGh5ae4WfHjtAA7i7NKf1Bm+vEufUq3EsHh1ZueHSqON8GvQ8Ghp48\n2R6/yJVR1a8233x6bzDjZ5+vgdatA8PjZ4roOzZfYRPzePmWT53P/qn/N0lpfrk/WPZP1X69\ncGB4+Zu1v74XrrFJ+gozbB0ttkGO3XXY5NjRfFumi+vB1X56/CXOXb4hzdr0yquzzjtO1yam\nOC7c2kLZpmxLVtT8NvW/C35u+87KZ/M3DquyA+mxk1SuXxbSV5X3xnnYtnRXTAP6jJ954eDw\n8luKl8d9P5Be+jY7Dgr13aSNqKyFYyX4ujb+fr3XQGnTQYytX2rbhXw3WZY3sHOzu3JgaOw4\npwtHE172BcpDdwV0QatkfvncSm0nOk+pdN5XHi54l+aH58oSdctvx3KNrl88XW651rLH3O7L\n6Bw6MnL+I8XrVfN+cHjlzRl/8ijl82Sp9hzNQ+XI1Uvp3qfPELvou1WHtWMr7p+cCI7Q8fyQ\n2VSLYfvN0pbfr9Ye9BSD7505OLzMnjRyg6OrHpicmLRt6Y5fmYtO+c/ofpfNvnDt8IqbbL2p\ngo6/VUpzmvbpWKn9b2VUsPPZXzPp8aOm8+LcVGXd2pYnt7YKl6ivnRhtsFTxBFlivUbOOlSZ\nnahojwCW7qA1cmtNldeazOjEzRe2thz4Z33717bqOOymD/vcl4/ohDKoqp6fmfQXrh1d/quZ\nVu2xyVvuSrU98/vJIKEzcbC7/gB0rpVRJ19d/Nc3YAX6euLwj3cD/Q2PF/xAz8Kduj69/Max\niZsvb0vtf0nCSxyuXv7TwnR2JtXdh3X6/38H08uOnTOxzzmuNak+obebPoDtLmkuf6W/0Xn+\npwfSD791LHOpOW2G8KivfXVZe/Kgq/QnyfrKZbe7ytViG9bBt97zgl+o8ItVbvvAsBAo/ffn\ntBx0t2yeq7dz9arVrA6qofPsQ/EdSn+Wc2smlHZVe8uBf9H3cm2rb+TbNWwH9qGjxLpRFD6v\nnvt2sUt1ie+MtcPLf2LZjWVWrxud2Od77W3JR7SBHXQPZgelz2/LufuU5hw/PXTa2omfTcuX\nM1idNg53Z7WPL2prPehqFeLpWrazqr7hgla+/hKIenhuQH/T8BVdYTxlfPLCB/L5rTbDK1pS\nB/5av7y7QMl303x7zDhnGK6fT5ubZ+efjX+kNz8IeULz25U+VwbpZ+VTmLa7GZ4GjYEuQnkX\nKt32ijuFabWhR4X/w/Fg/NT1w+f/TctyYWzill+1pg64LJHwDtU+2m5D+nzJ1Jm1prxxnbUd\n6wRdNJD2jmhP+ufq0JmjP9a2dpT7djqVy8r/f3p07H1qFx8bc6s3DI7yW3VufOLm+9om9vyu\n19qq4yx3XMy3ZVrXV52u117XcTG+qK3V+0MiSG6rRbuFbcncVaZcuwjzs/alA/g3unDx9sH0\n8q85d3eFgc9qO1/9vL3loOvy7VTfmBqer/Lbz7e5yHbCbeZf3Z0aOH9d9V88Prni/g1lqG/C\n2siVuX3heb2qndpI+Mfodqx4l+hrAF+vuxU/HZ28+boW74CViaS8PbeH9kd7btN2jAXOjp1W\nHWs6b+WNVGa76/RPpfs/CW+v2R2WXvO0H4M/6OGidw+MLPu0vlQ217mdmLh1RGU5r731wH9p\nu8Xt6BHt11/qSH5A+eysbMJ2bAMf2y/59pj/aY8V2Yx/2tqR5b8p1/61zpDiL3UL5/1aUV/L\n7vZRe8idjzR/Q8iX1d2jGRPaRrct0Dyl15cEuOCzA+nbzxzPXNm/YYUaJsYnb31kdOLg78xp\n80dltavctB90RlSw19w2N3yeudPXji67vIbNNOUqE9mb+3Xu/k5Ha3JAZ4ydVMltJZazUxsa\n0N4aF2Guneb2mxf8Xfv5UwPpxxfNae18upLuqf0YtlmJ584hfxhIZ18wOrn8T1G0iexttq3v\nalv9aufaVu6zt7Cf3N3K9xv96bFFo5kL7ouuN9W02ujqRMs+P0wmkvYbe3vo2Cqcz3IXtf6s\n7XxQF5Y+MO5Wz/QL+DamOFvxh4oPTVXvmb48d+DN9EJuBeU7U3U8V9EOiuGtoL7TWUV9gr2m\nd8hl9YF7iX0AzqJw9Jyurl3mptNLn1Sh7Qp0oqtryTbp9JjqoW+8qRhes6C7dc62QxMr7yys\nWyL18W1dXdvMU376MK/9sZwSGdc8a67r69UZNTvoVq2rJpMel/+RX6V/YIr0hXaQUgd5Ve7r\nlue7V+c6wrlHHKdYWb8hnezqmrMgnX5S5XrqDsSUq01jArXrBfr2xvY256fzdehLdnRkn6Yv\nV2oZHXV6Jn1VrpM5VRHmuYU9nhsJlMf67rb/2CsYH1rrurpcpJ3l2l02O9k2OjqstnLpSCFP\nze+TyZjOUTbvxA4ZdabTq6xzWHzHpJBWdzGnbLv53K0tBG2JbYbG/TVhXXrdorlq+HOTXb7a\n7dq7y++LJZ1dXWMdKosdO+q7xAlTHxdm3+I6Jgfc8vVWpoybSK1345PdLtk65C6qp3NcdL7a\nYKp6nNSVz39wXWfnDguGhzO6kFHdPo5T+1Jpqz9WTure1KCvtbutbY/EuP+4/e3Xxvn3dXV3\np+YMDa00s2r2U9l2VFRGr7v79AVDQ5kxGeWO9423+9S7SPu3C6NFYUnnnDmT27a0eOmWocTE\npBtp2Xj/hm3lQXW8Kz8+VZRxzLd9rZ2dqZ7h4Uf7u13PvNn5eRazyg1LfnRq0+Ml3G/lPvts\n+fy90unUGueWxuiDldpWIyqy4TxQ6tzaiA1MVx520cIuSj1PMdbf401Xgch39gvYAMk+LDpn\nf1WoAQIIIIAAAggggMBWJmADJOvLHtkM9c7dkm6GilAHBBBAAAEEEEAAAQQQQKBeAQZI9Qqy\nPgIIIIAAAggggAACCDSNAAOkptmVVAQBBBBAAAEEEEAAAQTqFWCAVK8g6yOAAAIIIIAAAggg\ngEDTCDBAappdSUUQQAABBBBAAAEEEECgXgEGSPUKsj4CCCCAAAIIIIAAAgg0jQADpKbZlVQE\nAQQQQAABBBBAAAEE6hVggFSvIOsjgAACCCCAAAIIIIBA0wgwQGqaXUlFEEAAAQQQQAABBBBA\noF4BBkj1CrI+AggggAACCCCAAAIINI0AA6Sm2ZVUBAEEEEAAAQQQQAABBOoVYIBUryDrI4AA\nAggggAACCCCAQNMIMEBqml1JRRBAAAEEEEAAAQQQQKBeAQZI9QqyPgIIIIAAAggggAACCDSN\nAAOkptmVVAQBBBBAAAEEEEAAAQTqFWCAVK8g6yOAAAIIIIAAAggggEDTCDBAappdSUUQQAAB\nBBBAAAEEEECgXgEGSPUKsj4CCCCAAAIIIIAAAgg0jQADpKbZlVQEAQQQQAABBBBAAAEE6hVg\ngFSvIOsjgAACCCCAAAIIIIBA0wgwQGqaXUlFEEAAAQQQQAABBBBAoF4BBkj1CrI+AggggAAC\nCCCAAAIINI0AA6Sm2ZVUBAEEEEAAAQQQQAABBOoVYIBUryDrI4AAAggggAACCCCAQNMIMEBq\nml1JRRBAAAEEEEAAAQQQQKBeAQZI9QqyPgIIIIAAAggggAACCDSNAAOkptmVVAQBBBBAAAEE\nEEAAAQTqFWCAVK8g6yOAAAIIIIAAAggggEDTCDBAappdSUUQQAABBBBAAAEEEECgXgEGSPUK\nsj4CCCCAAAIIIIAAAgg0jQADpKbZlVQEAQQQQAABBBBAAAEE6hVggFSvIOsjgAACCCCAAAII\nIIBA0wgwQGqaXUlFEEAAAQQQQAABBBBAoF4BBkj1CrI+AggggAACCCCAAAIINI0AA6Sm2ZVU\nBAEEEEAAAQQQQAABBOoVYIBUryDrI4AAAggggAACCCCAQNMIMEBqml1JRRBAAAEEEEAAAQQQ\nQKBeAQZI9QqyPgIIIIAAAggggAACCDSNAAOkptmVVAQBBBBAAAEEEEAAAQTqFWCAVK8g6yOA\nAAIIIIAAAggggEDTCDBAappdSUUQQAABBBBAAAEEEECgXgEGSPUKsj4CCCCAAAIIIIAAAgg0\njQADpKbZlVQEAQQQQAABBBBAAAEE6hVggFSvIOsjgAACCCCAAAIIIIBA0wgwQGqaXUlFEEAA\nAQQQQAABBBBAoF4BBkj1CrI+AggggAACCCCAAAIINI0AA6Sm2ZVUBAEEEEAAAQQQQAABBOoV\nSNWbAesjMB0C89zCnkRn4s2e573Gc8Geto3Ac/cFzl2cGRr+wZC7qH/j7S7pXNAVvEHzTlHc\nxzlPbTt4UNN/8Z1Lec69wHnedi5ww17gbvY9//6E83ZRfocqbuvl0yvZRsHXRsedF4w6z6W0\n7pDyuNnz/Z/1D9+xwrkbJp9K3Zfs7Wo7W8vPULodNT+pmFG8N/D9bw2OLD+nt/20XVyy5c2q\nzwna5q7a2ISW36mNrBpMr/+xc5eO6H2McGR7T9eeK1X2V2ol216J4IktGNeCIW1T1XDdQa6u\nYXot3jT4SpvVgvwFFM+NqE7Xa70fDKaX/my+e/XcRGfXm5XZG7XqMxSLtm3bdJOBC57QFtd5\nnmvT+vOULqt8B7Vf5OLN1/odmv+45v8mCPwfDQ4vv8W5k3fo7er8ttIcozTdei1ZPq1zv5bd\nq7rvEnjetnq/3gXBDZ7zV/SnV1yk91bdDWFe++mnpJKpj2rG/lrQosVqFs7Kt2ogvfQ9ms5a\n4rkdi57TkvDeoMmXhPkGQXCz2sA6FWQfFWdfbbPN0qr8mSBwa1T2S/xM5ofrxi+4Jze/wn8L\nOhce63veO70g8VLl2Z5PqhapNhYE3lVj6bF3jrpVD4dZLGjv2ylIttlxcKJqtKvKnZHIQ5re\nSWmephi197Wvn3RB4m++888fHJ64wLlVuXqF+dlrZ+eiA1s971zV57Di9VW/MU+Fk1FS9VTV\nta+sFQTah86zKW0/eEBLblbz2Ed5PL3gad5r/SC4RIm/pZX3DFzidB0Pto25Si/r4LeTvvvJ\n+pHl12ue63WL5rrOxJu0GR3j3l6aldT0/SrDJcMZt7wz5Z+gbeh4DvbWtlPyfkDludTLjv+g\nf/QpI8ur3jCvc/H7Egn3du2J3ZRXvt1bmwi8jLZr7SWcZ5uadH5w2eTIyFs2PQ/lSzK/47Rn\neYmWN8hH+9n2UzAkwxtVj5VqbxcqldpfX7Kns+11Cc+dpgZwiNJ1Ks3jgfN/r+2mddwcqfV1\nfIV19y8Z873vj4wsezS/lb7W3s62RTI+Vfk/U+nUnoJHVIdf6/V2P+G9ROe452vH9CifQR2P\n12QD76fr0kt/n19/xvzvLehe9Gq1/4Wqg+ocLMi3qQ374f+zdx7wkVVl/z/n3plMkplsGn1h\nl7r03qTJIk3qC2Jgq/AqWBCx4Pvqq69UQURfXkH5I6AvaLLZhYgiiJSlLIjSBKT3unQ2M0nm\nTpIp957/77lzb3JnMu1OJtkk+5xPTubeU57znO/p5zYoSuWg/pVJiXMHkl13upqjT91f6IFL\nUX/2Qf7qXPe83z7Um2vQHv6b2sOshkX7BHX9MoTZG+nUgxV+0H8IsTJqJM4UY8aWPGkFTtsb\nlu6L2nsayvAzELaeLU+px9Egu/viXX/GOaUxLtMaXriLlPoXweIIu05hLENH/Yom1XqoA1sh\nhTCSQVGPGBqfXhOWvDw62PnbEdeiB3Z9XIA6swBSdsnWR/URfu9E2VyPvv85ihoOL9ywXgbO\ngPu/IU30SdSvq9eA8Y/RRBzp3BovmkRZj+Ob2sKzvgjZn0OZou5j3JXibZTfrUmVvC6R6Pmw\nrAgOwARqRMDbmGokksVUQeAMxLkWNgKbqCL+jIrSGl68SNPkNejrg+gcs5NRN4dKYMGChYel\nzuxNdP2enNvCi44Umr4ME4MIDZKYTI7Ua3Ss9sBUyI3iet3pvJyBNExs7IXPh6alTuwf7HrS\nHnAD2n3wa6T4Xplu+nA14FUPxSxvnsgfAwEtlDDBNxf1JrrvIRnlDCZgX9S04HXIqZtX97dg\nVDsdD5eCgRzHQmHJDXmAVR8izWZo3YBf76SxoMixshxJXl1QphAcxGD7FHKzOw3yjnfRPDly\nKc2RMHCjxQDp+YKZESf0D3e+KcTScFtE0YR8OzuwJ92sJuQq0paZXqjpwc/jeAGdI9jIZMsN\n5ypFEbwGZDARoQm0vBiT3/PhBx1yTVPTwvWCSseCRc538jeitxtyJB0lLkPd/n5beOm3gZwm\nf5g/57QDO2gJfaiOYoGr3lLCPDFqLH/eTaMtsgQ6iA46LxCf9C6olzfsiJ7ZZpYT3vWDGMhC\nLcGMjtIiAz+q50FE6MYK+VYsoq7FUrp+bJuljQOFRQkmxUIFvGmDLOoKmoxS34smlv3CFjyO\nf02hU+YFg3UPI51WEpOTliOX8pTvns0n8milvxwdXOGZfM6vbwvPvhqCTkX0/Hrk1E/xSiZt\nnhMMBq4ApC2QtpbHicrBNjnpUt+XNf8pTPMRpWtYaElaJIPRaFvM9lE0UZZYi2Pa7phsPbXP\n70sbxoJiizs3/GT8ttQv2FwLBG5BWrTAA4fRfOSnn2UOVyUfjyYaDmyLDN2GkyMoXA6nvIhu\nPAAhfo8C7qfz47hhIIkOvx9LdP0sT0yRU+pfBMpfnYy4KG/h7TdQf+Eq5LNmxjyxb7j77SJC\nyjhjIRwJ/RKSTkc6GeTVm4ZdV4rlfzRf4r2oYe4lxPKPCiXWGlm6Exbqt6CO0IJHzykHp39G\nQldj+HpRE9rPEYZGnpGxmdKBQwr/hixhntYX76ZFoS/T2rj0OKmr36FPaMzvE6jdQxjtan0X\nC7WrfAnmwJNJgOomldX+sOhXp7dBn8FmChDgBZJTCOiov45KeWVOB12ggOxJgLLOwci4Gn31\nTeg7aYyYtPqM8YAmOyYWSWfpmvbrcunbA0gJ/bKTGgwAUn0eO440YShqWiOLwUhiwETOS8gs\nKmAcHuXyMQ7RNIGmQiQR4ypHeyIoRSKVTO1fVxf8O+S1lOJE6Wb1lph80NWC6gylqySu3MSX\nfcEroUmc2B5sCj+BQX5T6DEyYfWG8R7b+ihJV612RPiqr/JDToYmLaZS+/clup7G4ugBpHNQ\nKRZePSbq2C4fLHxIfrW62HlT8vLeROf3qtUTV6m31CPay4iPCWF1fYdTVudEE53/i4vRwbbI\nDvehL9gH4kYmsfn6efJvIpzv8kV86ntgsG6uoD5lw47+h84pRHw/Ex/ec0D0REd9JveouR78\ng9o/0XVH/LQ7mzldxaPFNkylWjvxStY5Nwx6oktjic4flJbd0dAeqaf+ZQfvYiE/DsoLvIVh\npdN79g2veCvfv/T5/EB7ZLO7sWA4AFktWqdKy0BNgQGo4V4jsVn+FTK62qlrwYecRUnR+ggR\ntOAr2Vay/KSyFBZJie7Ocnq5/q3hJYuRP2x4lh7Hs3VfXRI1us514/LvlCLAC6QpVRwzQxle\nIKEcmxsX7IWO+hEMeWUnkVTs6CyxoSRoUlv1wEFyqjUYDGiiYl9F8TNQF0uPBhcaxJSZ2TY6\ntAILv7GmAbdcNegh268WaY5NYWa4oG6kwZJu88OVrvKTKJt9BeHK0YEcuiXra9F412/csG2R\npbglSB0K8UUnH25Y97em+gj5kWWp63AL2XmVsHB1mOq/1P6RrxP7BrtwW59/0x5ZitvZ1Hrj\nZUJlhZuM9hea/BzK/puQV7Y/Gm/5jje+fSVOqXuiiS7cxrhWjIZ2gds0xTy0Tt+bEuPOf+ks\nk3iRMa1PDQx1P1YsKDYcsDEm/r2y8ravMr+Eif1uiEPjVkUGaVyIbYTv1WKMszOFW7qhg301\nPasALfJCr2GHaAPko+L+qZzy1P+mZWaXeHz5S+XCOldxn600j9TuMfgfg7qLfpXNFCMwoxZI\n9uRuigFmddZRAgEteJm97PGX/5p16v6StXe/7YUcBpaKdzFLpZGVg+c8tMB5xcLV63U95Fer\nNIulM93dadJV6eKoljxRLqiP8lLcxWZPklubFh4I+Ydn3SefajZdtT4WR/89+alPfIq6Li+v\nJhVchf1qLRZHbtq4wfJaNMpvgXfZxRHFQbhx9RnjjW9f8ZDi6LaGJXQrzKQb3Ea9AIlWtTgi\nZced/9I5tssmoGudxYI1h07ZClqcAT0qLG97Ebg97pDArXiVmUikY32ErMniiFJ0mM2D7ke4\nGrSF687E4og2CWo8jiqFW4ovcdMp9RsMBi/GuF8qyFg/WV27HyuIXZhAcQK8QCrOhn0mkQAN\nBugiD/bTUWOKUfKe9clQ3xl0apcU7uvGEgkPXc8vNGAhy5Ju3xnX5Kp2yrKkggSUaGkLBw8h\nP00FFuPHuSWqYOiCjrUsY8ii5/Jyn+UpmOr0cqT2D423agkvol15Xwbt6ExfEUoEprKC2QmN\nsuIrAyXETaZXWuli4WQm6KYlpfYFHNsbTK7bVPqlAoU+2whx1MhzNl79AnV1JyMAnpXzY+xn\nrJZWGqNOhv4N9dTnyqG8dD1Y9x8joaR2GrJa0SJvJE4FB1mZ9PKgpeHSwY9rhP/xfnSgdg+7\nfVtk8Q6lZbMvExgfAV4gjY8fx64RgToVoklOzQeDGqk3yWJkpCm04Zb5ieKNZptgIJmyk4p8\nfdf2OVjRJGfSDd4gkJKavgcljKsU+0EL37cQ1Vpp5/aaWotd+/KUGNY0fU+/imDiuVWt6wc6\nr7Vezn44IP91mACslStIuIK1F010/eg72WGpfjSHZh1cKF20p72Rh/pCfsXcKL9Y7uxdzD/f\nHS8rwBtWsYStoaE8oX/a2RFJ/CdskYGE6tobzB1Lqd/c2LwdNPK/QEO7x612dh9bSj77MYHx\nEJjSHdR4MsZxpxkBab+Klh4CZQMCQS3Qlg8iI0Mb5rvx+dQjgImyjomNU35yTDmuDY3tedHa\nSHjC06QnErJvoPOTFMrH/6SsTAJTfcJfSH08Er926qcSswrpM9XcdL0OLzUoaOjtgdWYivON\nOro+2m2hOwmqSXckDh50ta/q0OcaJrLOomWauPXUfjvkSOJ5BwFptdnPFOW5lz9VePWjtnbq\nbnnlOMQMIcALpBlSkNM9G6aQa6bbDuxEMjetzCf58jMy+X6+G59PPQK4bIXvgki7/LBbO6Yc\n14bGM/YKEj1ZUQVjxKJX0dbUVDfRq6kK1Qj7uJpI442DNtI3XhmTEd+yzDeKpPNBlW0K34Gr\nzKBef4g0ar9pqOxvPqEAbumfEPlO9tAwdXSEa0rl1hTaJ9Ut0qSGb65Nib61VP7Yb3oT4AXS\n9C6/GaO9Zgw/gRuSpts9/BPCHzuHMXx09M184fSRvIkc0PLTm+7nVU5gxp1tLI5CeMHhIyQI\nu7WroIfPZxXGrUKOAOIwY68g4TanVEbarHMyXeYEmzEv1rZ+2N99qv1ktkw+xuVtf1tGPTAu\nGVVGRh/3EPj7fjavyuSqikYLXny76MGCkZX6O27T9LXIRn4zlO+C8go44iOwqNeypmMi1Xnc\nuvekkxz1C+5xAQ3G6aTEUP9gzP64bDFJfYnki7gPebCYf1F3PKtrmf7bfVF57MEEChDgBVIB\nKOw0+QRioqcfA87t6L8rnkzal/DplZ9r0dCAU9Pksx/EuwEyC+YLqd1T8zRrmoF1W1i2bNT7\nfUb670TCMjNd+PH9bEptyxgfXLXv2a9xXV3LRQ1G+MSTejqe7KJvGfkzSv2Mrj3VwlBZ4W6i\nh+jKYS3kTZYMumKvLJPq56QbfPDtekz+Jz3dShO0i1Tiw9VFylRaqR7w8/l8kMQHgsQNleqA\nL7ndhhgVj4eVysVXsS9yw2L4/A0qL31TqraGPi4r1U1C3FFmEdmTAuvl6J/KhBtVD+FpI+Kx\n7IfAR935iAnUmgAvkGpNlOVVTSCVVn4/+ogPLapBdPAFFxNVK1JhRGdgwZV+HNXAUD5wxWEo\nLcxLiopLJPF6XPtr7zVJs2g609wDRYKJhYxWWjaVhiuPBfuzwvqmED32ZLlvcMVTmAZ2Q76f\nqws1K1unjr6mLOvs8rpPZohatBmJ7fXq8oVvwdyE3fw3a1TuKHN1piXFBQ7vsiDHm+5449OE\nFBPYrlhi+TNllZ2AALHBztsg9mHko6oFwLjzXyJPWdlSpVOpRcWC9Q71vIdGehnKuyL9s/lU\nf48Ndt1eTGa+O20a4ourP0JcP31HvpiRc4fZo95vO0Xj712PuvtGpfV2RFiJAycdU2QyPyoR\nbMRLWsnzMKSlnXgj7sUPMOpnqI9lwwQmlgAvkCaWL0v3QSC7E6wWo7PGznDxRQ91pNkw6jRT\nmcdiAkqd66Tu3toDCi3OrPRxmIhnbI1K5LUC/wzykcLnCY/Dx/WK3rdNg6ZlpU+kpMrJLKFO\n1V6UJpmqBZSImJVcA9n2bqT8KKkyO+IRlbfL6ev622VaQr9yXoiPW+7Vpb1G9x+9YXuN/i/j\n6uizSKdsHXUY0Ovv7oK8cS38ISuFOtVnZsQx0cFl16HQVrh59eo32cfEmW70gSnBA6FKGJuN\nUt/pM4rcAlUirusVjSf2QbkMVcuE4mWNWBI1lj8fi3ddhoK7lfLnplHoF3Fo8Y6Nlcom1/ky\n7LwLSW/xKplOfryRc2ofUjwXiye/OuK2Fg4A4SQk+6GfqwekJjHHT9z5JaeKDIUnUyqw64+m\nd3Y8eeMrpcLGjGGa2N8HiaUXSTZv+X5KJD9fSl4hv2hi2S/Qhm+suqwdodl8yWjU6J2fm86q\nTCZjHQ23AYQpmQ/40xVb2+TKGD2DJ9q0PR6eVOxj56Ohs0f2YtNSqAuy7DgODrjzUH0jOrTM\n9221+enyORMoR4AXSOUIsf+kEogay/5gCfNwJIqHYHMXPtT5khsGDAyq6qhYomt5n7H8AdNK\n74eJzuvwp4XKyG6b3ZnCwTVuRkbdK52AIoZjcIRbAnArjRRPmmm5e2zwxjusTHoeOvf389Oh\nKB631ejY++2dW8/EF7JoUIDO8jVk7lOx+PKy96jjqsStqUzmMxBPcW3jqFfwp0CYkfwUikDh\n891dGWBPt51Q2dDkfUy4YvFcd1eOe27/4vYvZ5J0szO42sFywuSdFJGTdNzvSRvG7onE8o+i\n8c4tEXVlofAet75hK7Mn8vQ/cLNvR/Mm54ajX687HWf9aIKkDMx5vxYzun6YH0aI2wZ7jeED\nkMffu7Lyw3jcTWHJr+Ir8UchzAIkSFfBqM6NLJbcsPTrkTNyDGdqJ7igIR8W5vDu7q0o0G0R\nFiaXkp8rwxPfnXh6nezjvHRG6nS+OwXOys3Kd8p0VF72Nj+0UevnyrQ+jcXrO9DFqf/ZYIhv\nt3FHRxyPac/YRBBRhF4ARleMCq/m6E+9vYa5KWK+ltUbqeaZQu6uG541SyOPR1I/5ERTuDKF\nD4GqSyApBb/hHHF01QYGbg+gwuyGnft/UD7zOZGbk8bIAtJxo7z3Qv7JZjq1M+4QfAbuxGhk\nYuvGy/7mLaBs/iTbWtYbHz4IVzmHcvSb5BPD6Pw4YyR3R/7vLqhvrj5O1pBjIW4G52b0p9eO\nOOIgN/jomRsGLp8grRvcc/p1Q7luaDMpdO6nxIxlV7l+xX97zGg8eSyePvsF4o/pN6hcs2mo\nu8y4uYdh9FT1UoFeo2sprpmcD1lj6pSrdzadsZq6/hivnogaa2YXuuWtf7j7DWFa+MyGfBRE\nqO7l1Cfkg/rnYTyw9APLEieA0RoKQ2HdFHGOdo36hjYNWZ9G27zT9avkFwvBu6UpPo3bXt8i\nOSTPjefqhPJeY0l1Evqxq10//mUCE0kA8x02U4DAGdDhWtgIbGIK6DMFVOioaw2HTsIX4Y5F\n574tZl70FPTL6CxvjyV6/1Cgo9damhYdpwnt39DR74jw9Brf19Gx/wPxgvhE36fhthncBjCx\nwYOp6hVMULbBOb5LIfEriT3i4G6ZrMGBHMZoEcNEpB9O5B7Dv6cxEtzcn1h2rxNu5Ke1YclC\nvJT1bIjYFuEa0KFTWf4LM5ifZMMf39TW1LRAKO2zSGdLDCYpDDHPIY0/9w12/QVhRwacEaGl\nD2RrZPFF0PMsBJs1Nqj9gC8NdvTGKEwOMPBJsQmOw7DIKz2EoQI49txLD8w0GKIe4oO19Tgm\nIJ/g516UwO9j8WV/F2LPYGtkh5NwDWAp5B0AOU2j3OgWMwxwQmESq95AEnHICELHNsSnQa8X\n9+Hj1kjRguNZ8F8tLOs+jL7dg4NdHwjx5WBbePBivB72c5oSs6nsEI4MNnOoCsBI6KbUk5al\nnke5bg2XjWH7IOsxmTFv6h3qfoyCeU1j44LdQzJwAerTp6BXEwQlodMbUOW6mNE9MuC21C+a\nK4NyIXJxCOJn5Qr1hGXJqKaJHZC3vaBAM8lGfnAFUTwDte60DLW8X3THvGkWOqaPG6IOn4b8\nL4ac9RCG2GMiLD+CnJ5ovPcHuXW7I9LWVH8Kyo4WTFsh78T2JWnJ7ZDf7aBFI+JCLfsFJ5jI\nqBcQ5hHMum8ufnXlxPbWcPgXiHUC4iI+FRmxVTShW4NJCnSSITgCsTI0vAgBk6MIQgQRaBDu\nz2IV94CutD2Q1l7gQG3HRDmvtizrRl2lr0exzVYB/WTosw/8qKw/QLj7RSbVHRvqeQfnMPMD\nbZHZJyipHa8JtT3UoNejv4ayvb03MdDT0tR8BAodOuJbLUgbv68jq3dE48M3YnJvkIRamdbG\nBcdILfA95Icm7PUkF3yGAWAAdaYNfYbTN9ic+jOWuGJgsPfS3LIa1aatYfGmeA/xQrA8FFzR\n5mQ/ED8uMmZPdGj5w27I1qaFB0qldcCfvuXktAdwUmg/Ovqs0by/hvjIu4a8d46MEW3hJYcj\njc+hXHZF2DC0exvh7lam+YTQtaOV0A5Aea0Pv4+hB14skF7ea9z4Is6nlJnVuHjvgC5RXyT6\nEzUX5TAL5UAfaYX6tonj/73pdPqH3is7DaJjdn1T6FLk+3D4t8N6+jI7ngkBb1qmeV5saLmz\nkP3cxq1NjYgjD4VfK+olmgs2uITVg4XReYiF9ujPtNQv2FwPBhei/cyHyihvlJ8Uj5lm5sb+\nwRX/9CetcGj0YZvUS30hvqZ0GNhgsSP70V6eQR42RGXdEww2xjn152RQJVDnhHoSve5FseGu\nv2WdS/9viSw8WIrASRgb90BIpz6Ke5JieDm9JCgb+7jG9nDLyeB2NPrQrVHfTEvIF4Hx1qjx\n3i1CrBpZ3JROrZBvh94WCaFPwMdjhdgeZRRAnmgc/2s00Y+6f5v/FzoUSobdJooAzbvoebL9\nYUf6uYlKjOWuGwTOQDbRoWW/T7BuZJlzyQSYABNgAkyACTABJjBDCNACieay+82E/GCDjg0T\nYAJMgAkwASbABJgAE2ACTIAJEAFeIHE9YAJMgAkwASbABJgAE2ACTIAJOAR4gcRVgQkwASbA\nBJgAE2ACTIAJMAEm4BDgBRJXBSbABJgAE2ACTIAJMAEmwASYgEOAF0hcFZgAE2ACTIAJMAEm\nwASYABNgAg4BXiBxVWACTIAJMAEmwASYABNgAkyACTgEeIHEVYEJMAEmwASYABNgAkyACTAB\nJuAQ4AUSVwUmwASYABNgAkyACTABJsAEmIBDgBdIXBWYABNgAkyACTABJsAEmAATYAIOAV4g\ncVVgAkyACTABJsAEmAATYAJMgAk4BHiBxFWBCTABJsAEmAATYAJMgAkwASbgEOAFElcFJsAE\nmAATYAJMgAkwASbABJiAQ4AXSFwVmAATYAJMgAkwASbABJgAE2ACDgFeIHFVYAJMgAkwASbA\nBJgAE2ACTIAJOAR4gcRVgQkwASbABJgAE2ACTIAJMAEm4BDgBRJXBSbABJgAE2ACTIAJMAEm\nwASYgEOAF0hcFZgAE2ACTIAJMAEmwASYABNgAg4BXiBxVWACTIAJMAEmwASYABNgAkyACTgE\neIHEVYEJMAEmwASYABNgAkyACTABJuAQ4AUSVwUmwASYABNgAkyACTABJsAEmIBDgBdIXBWY\nABNgAkyACTABJsAEmAATYAIOAV4gcVVgAkyACTABJsAEmAATYAJMgAk4BHiBxFWBCTABJsAE\nmAATYAJMgAkwASbgEOAFElcFJsAEmAATYAJMgAkwASbABJiAQ4AXSFwVmAATYAJMgAkwASbA\nBJgAE2ACDgFeIHFVYAJMgAkwASbABJgAE2ACTIAJOAR4gcRVgQkwASbABJgAE2ACTIAJMAEm\n4BDgBRJXBSbABJgAE2ACTIAJMAEmwASYgEOAF0hcFZgAE2ACTIAJMAEmwASYABNgAg4BXiBx\nVWACTIAJMAEmwASYABNgAkyACTgEeIHEVYEJMAEmwASYABNgAkyACTABJuAQ4AUSVwUmwASY\nABNgAkyACTABJsAEmIBDgBdIXBWYABNgAkyACTABJsAEmAATYAIOAV4gcVVgAkyACTABJsAE\nmAATYAJMgAk4BHiBxFWBCTABJsAEmAATYAJMgAkwASbgEOAFElcFJsAEmAATYAJMgAkwASbA\nBJiAQ4AXSFwVmAATYAJMgAkwASbABJgAE2ACDgFeIHFVYAJMgAkwASbABJgAE2ACTIAJOAR4\ngcRVgQkwASbABJgAE2ACTIAJMAEm4BDgBRJXBSbABJgAE2ACTIAJMAEmwASYgEOAF0hcFZgA\nE2ACTIAJMAEmwASYABNgAg4BXiBxVWACTIAJMAEmwASYABNgAkyACTgEeIHEVYEJMAEmwASY\nABNgAkyACTABJuAQ4AUSVwUmwASYABNgAkyACTABJsAEmIBDgBdIXBWYABNgAkyACTABJsAE\nmAATYAIOAV4gcVVgAkyACTABJsAEmAATYAJMgAk4BHiBxFWBCTABJsAEmAATYAJMgAkwASbg\nEAgwCSaw9gl06M319XOEZrZpKv1JbKhnNXRSk6vX+HVobFywSVAENlKmFR9Ipt8Woic1mofj\nGpuaInN0S9abmno3Hl++ZtRvIo466maFgnOlrjWlhfhgcLDrg5a6hSfIgDxUKDk0bCYfD2qh\nkJQyFTDTz6pU4D0V0eYIZUmRSL2TEZmAHm7YTJdmstcYfDsYDG8bDshDpNSHrMH03SIEnXW9\nRVfyo+jQsnfdHLTUf26ukPV7SqmtL4S1Oim0pyht13/0t6NhVoO+i9QDcy1TvCus9Bqp6S2a\n0hotaQ0GhHxfDaXiVqO+jVD6VkqpkBYQb2mG/FdUpNJNTYiXknODAbmRsFRcG7IeH24MZOql\n2NVSZr2ZSb0kVbBZCwQOkFINDlnBO4eHb3hrNP1qjhbNndUoj9GUaBAZ876+9IqnvFJKl783\nZPXHLeKEFhlumCNkwBo2hgdC4VCrJlU6aqTeQX0zIFm2NnRsZsng+sLSo/3Dw+RulkhRa65f\nOpfanrTEmr7h7nfC4SW71Am1o2Wqj/uH9YeF6EyMjX9UKFIX2SoQCG2tpBrWLfGCtx4IsTQc\nqTf31ANyY5VMvTmQNp4W4o7kWDlel45IW6RujqVk0EokVw+Inqjjq7XUL5ijNK1dWlZv3/AK\n5ElY3pje40bxuY3rGuv3UUoLyCHrn32iG20xa9oaFmxmSm0DxI71D78POasyrl+1v7NER5sW\nDm2WVw7VipvweJHIPsj4rwAAQABJREFU0g0CVnq2aQYG48kk1Y+hUok2NS1cD/3Wpm5f0NjY\n3BwUYuPC/ZwQxXl0NFC7pT4wI9PvGUbPJ7npzg80hzZE/xHYXNeFnrZEQqKhKUtE40n9k/aI\nuZGp9JCZGFodEIGMCNehHWhKGtY7UbFsIFcWnR3X2B5pnGvHcfrcVtHRXD7eWEm1cdkzOCu0\nPfpkMSstMh8ODq54P19um1g8y9sPx0RPf26YRa2zQtq+etBqSQv5jGEse4H8a5uvjrpIXd3W\ngYCcpzAaZIT5TCKx/KNcPbJnzWLRliKi76lZmeHYYOYR1KVPGhuXbDxaP2KoX+XafSHJlbmF\nwx0bBVRoE8tMG/HkANq5nZZsqV+E/kKsV0l/UVlKHGpdJCDXxUxPwTyfAZ2uhY3AFpiMTEGN\na6ASdaQNmjpXSblQCtnsisRkeI1U6v/SidRPPZMk17umvzSprdcC5wpbB4ztrlHiEwEdMgnr\np/2iO+Y6j/3taGhtCp0tlfy6lGKzEX+lhpSQt5qmuBmD/Zfg/hn4Y9zIGqXES0Jal0fjqf8r\nM4F1o1T02x45ZXslgheC5zFCYiLvGDAFZmhQxHj9vccUvNw5AnyEgfQtqcQu4DiSppsUVroD\nSlmXxYzU5e0N9bsoXV2DefzO0EZzwxT6zU+XwpAb/ebnpVBYCuc1iJlG5N/GjOGz/DBvbVzy\nS6nJryD1gDddyLPw9wA43y2Vdmah8k+n1XnxZNfLXj2qOW6LLDkJaX8fae7h4UYs7DJF/mkR\n9B5sM8KNtiWh+tGWlg9Z5kXeCRm1vZAm/hthF0FAi6tTPkc6RxLvKiv9tdjgittbw4t3Rtif\nId5hsLobj36VUAPKUn9G4ewHmVvBf6S+ESsEeFKJzJdiieXPeOO1RBYdgvnwuYh/IKLYm3ZO\nui8IqWizZF/U51Y3DhSKYSHfmRLaxYbR+bHrDt2+j3L6PtKZ5aZt50fIIfw+C202h24buuHx\nG4e+Nwkrc0F0aAWl48dIpLcQGwHfQ85Rl7N5RToZ6PqQKcwL+4zu+/0InNiw8wOtkdlf1qT8\nFspzGzctlEsKjWolViHn9Q92P+G6C9GhtzXVnYrNlHOQtR1cd5unk1fbTQn0c+p2KdLnWiqw\n+1gewkQN/RcYZSCL6u5IHwi3l9GA/tdKp+/R6oLnYqlzMsLWu2l5f/PT9Z7bdUuqx5SpLo4N\nLvtLW8PC/bB5cz7yeUhOenafLOqhvl0vs/HEo9l4Xbd706vl8azQom0CQe0CJHqCt39EHt6F\nJlf3xvt/0drYcqjU1Q/AaB+42f0i6Yfjf6IuXSItGUbZXY66v4GrP+kIGbTAxyJKtnrjod08\nrkwJHp23VZoXe+xQwV9Ax0MhK7dtK9ErlHlpNJG+En1nujWy5Coo+e8IG4J8hyc0xqCWE1eJ\nYdSPv0DT86LOYq5SfYqHOyrUFm47S2jaWUh485FwSiSR1jvQZgO0QU8fKGLQrCulMhcXW+iN\nyOCD8RKogwDaCNsfFptr09vYFXt6Z2FGaH8GcrFOLZAw6TxG0+RNyLeODo062VxDnR12/kVG\nHBsd6vpHrmdtzloblx6naWIFpJXQQRgiY0GHZdgdyzVNoVPmBeuCd2JCNhuDFnUMOQaDl0mD\nFpYmuYOGEwqdNjYBxVMpJY7zTvRyhPg4aY0s/Toa9BWIQumO0ceHKN9BvROWQpHJH3mNg1UT\n+XsH+ULhJ8rN1kOIvqRK7pBI9HxYOp39GlojW70Dpu0UrpDOjrxifnQFERecxFkxowuLwmrM\n0nBrWC1HeR5Nsgrp4EolXQr6oy0hjGlZ6uTYYNftrY2Lj9J0rQdlgQt1BdqeK9D5dfOIfDyF\nicdumOxQMgXHDjdsIX/XD4uSH2Eie7EQ8wPtkU2vhNyvIim0kbwFFyKQCoVkQfckdE9lLOvE\n/sTAw+2R5n8h8NaFwrvpFpWDDAHP4l6j+48Uv5yh3XoZCd2McAfD6vlykR4tVjUA+nWv8e7Z\ntbhKVU6nUv7OJhAWAHJHlJpngZKNZfdD1AcKdX7U6LqIrhjhSvitoLJXofD5aSE+6rmCXFyD\nFGpMHS3FP8sqW5fwv+SGSX663nPoQFcUUY7qFfxuB4s+MLvY9obLP3bjoaxu7DXWfLHWVzva\nmpZ+CauYXyNdqt9j+mTkP4V6nEaTsjeW8hk4+iE6tqBg8usauRHffHc3X/C9OWq8eyrq4DCF\nLWacsQOLnzJtW4p3kCA2VCRtQpA4+18xueQOXagf1KVQ3+o1un5VKmw5P1zt3iIQUHehoOcW\n4TmGhS3T6S/Q95wUTXStLJcO+1dNgOo4L5Cqxje1ItIuyRawdLtT31pUbZ1aILVElszHSHgP\neI8ZTL1lgI7VRKeawi1Tn8rfdfaGq+a4ObL0Myj8u9F9l9EBixwhUpaQ+8SMzufctLJXvyRN\nymjnbsykww1X7tceIIV4LWr07y3EbYPlwhfzb2tafAaycjV0ydn5KxZ+bbgXGsjXlh6YacSj\n8eGNsBta9PaitsjSXtQPlG92JlCtrjRZwdW1L/UmOm/wKUPDlaM7EGd+ocmAH1nEHuEt1OPv\naEL9D47HTOzLyatV+dm6KPUdlMH2mF+dBrpjJo7ldCF/4oofEwcfY5q2yXjKiWQpyzoWCzfi\nXcLsGWxr2mEVynNPpDl2Y8cTEzJp4XADFh1f8ThP8uHxTe2RWU8Um1B6lUG54GqEvAhun4Pe\n24+3znllT9ZxtXUU8WgSfyvKqqNWuraGlywGw9+jfpdc+FWrcyV6Ovm6Hfk6CeGpDxhjnLHj\n1+X0pIikK/1W09YQk64mnhmNd15LMvyaSKRj/ToRwtVIuT509T3mZnWXuGMwc3B0aPm0v7rh\nl98khZ9RC6SSDXeSgE50MhsgAdrBud6TEF1+vRo2AfsqLCZCgm77OAeWzYQSmF+PGfyKbBeL\nbq6Ega+O3jiIjUCELz3IlBBTwKujAffxkEzq58vogBsfSAcnvCssJMU1uJzfUk1H7cqgXyRf\nh135rdqams/3uvs5xjMneHZIu4p4+Yk32WHLsZ4sfWw9lGpqi9R3FksTi/jrMB0Y9+KI5KNc\ncPeQuoZ28oulV8i9NbL4y4h9CNWRQv5+3LLscQOUEJdDZslNgWJyszKK+VbubsuREos0eTrY\nVJ034opU6ervuBZHWc2x8azLZUIc31QqJ61N238Hs8S9yi2OSEY2b/L0tvCSz5aSOZF+rZHm\nn0CTOZXUIYRBt6jOh92hkvATqXe1su26VUVkJ78nYFGzsIroY6KEwws3RCP7jVNHx/h7HarV\n2Suj2LGTr+Paw0uWFgrjGTsqmguSrmQKySrnhlg6lmi/wvNBc8uFLeRfJ+p/Cff1IMf34ojk\nZfXGk0m6jjtX9qxKRiG92G3mEqioUUzj7K8H3Z+EpR28LZ18UMO4D/arsHS8CpZuraBF089h\naeE007kgi2vHtEY2PRULjpH7pctpgU6NBu1tWhqXHFsubKX+rZG6f0dY3CJQWTk7OmyL2wLp\nNifRFlm8A24PPA7uVU/ucnSlnWglv0kP6Oa4V3gi9bpzMGLRbjqbCgk4gyV2yjsihaKgAzit\nkHu1blgEq3o9+B0f8bGYkedXOxkolE62vtMV08rqfSEZNXRDlc3eNjQembXKC9UHPEfY2Bae\ndUZxffYMokx+gJB+2r3CcvSC4jInzodulcMV+K9UspjzaoH8rauTRx39+oVeFtUe14vAtxAX\ndXxKGB2tvnAd1Ou/i3Y4afMdALFkQP8Pv1Sa6/EyCKFO9tn2xiSD+NhElBu0h7evyUJ4TALs\nMKMITFrDWEvUfoB0Z8P+F+wRjg5n4XcPWOwQ236H4Jcuq28DeyUsLZwOhWUzAQQwUfw8xPoc\ngPEIvI4HXGtkMMnpwNUfP5McpIzpk5bVAdO647ETVvKe7ipUlXhFh1tHfUXHfJcebg75isSB\naUdRtIfr6NaTHNPY2IG38OF6AgWolbEXweLkSsU1Ny7ZHRsJdPV7RhpiS6YWmauVHLsNafZY\nUFCtlsi2B+I2oYIL6oIR4Igc6oizFy1WioWZKHe8Le4oyPa1cVIzlhOVqQmU6+R96+bQKVuN\nNxmlqSnTJ1O+0NA2Rx3cLj9fmAB2wBeLhkky6Adxiy/NAXwZXdeOw9yBnm2phaFnL8f0+7UQ\nzDJmFgHszs9osx9y9ybsZbDuQHEQjul5o6/DpmFdQ/cgfxv2RNjDYFfCVmsaEfFM2Eon4XtV\nm9D0i6e2y/bXlWuO3j2IyeJOlccoG3LbqnRQckeSjAXJNtAHt8bVzmCnN4PZ1Dz/EjvqoBCe\npWFTBQG8PUPbG/F+541bL0J0pbCWxeuKx2ZNByYjJV+7bYfFTvY8KEB9Uk0Xvn7rvav4uvMr\naaOsoNGkvg3eCIhJ2tg3NRaM4Dii/9LqMgGadK8pFa7WfrhUiDpEL05gUykBPKeS0fQA9cOv\nVxqnQDh05wKvIC/gs5acsEhPB6wA1e2XRlU4KrRWxg77TZJI28frv9GG5mFTM4D6PKp+lUfU\nHtGGd6gyOkdbhwjM9AUS5e8pWO8gQW8YegfWuzjCqW0o3PuwRQfJbLCy/1sQ4ljYSq+UzNid\n4nxS6OAqXTTmRlX260Rz3ao8w+vUqlzcqOwrrJX9i556/J31aBZwh4+qZjKcxEBTPyqGjyom\nQA/t4rpgtky9saTnde9e93EeZwfmT6hPoD6opNGUhckLvQCPzWQSQIsu2j9JKpMq2jzVM0s3\nJ7+R0iuY6d2RbHwQQDesV9MPe5OYT1dkJu+qjDfposfo6zSVt9kSLFrXi4qpkUebaAtFs287\nq0iiPTbaj1BWFLxsoOrG2rJiOcAMIzDTb7F7AuV1OGy7p9wexPE82PU9bu4h7cTT1ZynXYcq\nf99HvPmwB1RoL0O4dcSod/1mFJ0ZPpeh3vIbr3j46nTA5OgNkok3WOHVz5J292trst988Snz\n1jgiJHxG4uAgQFdTULVezodhpcXf891qcY7VDq5cl37drptORmqr6Sqle86/k0RAKeq7Cxq8\nNxplUv7V0fmR7XqWkavz3Sf6HFN9SpMX2T5AYxMjiA/gjrOs8PFhKTH/n1ImKE0tL19raexQ\nYrDwh31L8JJiNVb6tRxz3y6RGnsxAZvATF8g/Qa5pF2Tf8HSrXVkfgtLC6ebYDeBdc1uOKDF\nE314jV7awGYCCGCC8RcM2b7uJUbHiKt9qszrdytXtmodpHUnpYIvHq7ErKPSq4OVKYYPJFrp\nDL363LfBBvXdsFRv2fgkIC1zeX6UvlTXLbTrn+8+nnO7fFBOlcroN1b/o8YTAjvpWuer0vzk\nh5sqeuTohX4J77L7S46b50TF8VHgKl7gg5r0Xv9wt7254hE34Ycpaa3E9SNfV66mZLlMOKnR\nBLAR198/mKb5wrgM7rG7A+Ve6C6VccmtNjIWfoneodU078kxKG+MHTl32OT41/oE6Zm4TWel\nb7mmwJibfwXMt5RsBPp4rbRurzI2R1uHCMz0BdI/UZZfhV0PlgY3ujL0K9gXYQ+GfQv2BdiP\nYOlWvK1hvwH7LCybiSBgpn+DmSfmfpUb3AeVFEZqzES2cgm5IVXGvA46+Kr70GEYnzm9kST1\nJ1KrMAC+XquBhQZSdP539g2veCtX08rOLGFegZB6ZaE5FBGgiaCl1GvRoRV5u6ojfJ6mMCNn\n4z/QcWMdlVOFZtUwJhLX+d1MqFD4lAhG9b4WitSqnNAGA5mUeU0xnfpFdwwvaOlGehXvZCOP\nKZTh/xSTOZHu8fjyl6Drg345+w0/kXmYVNm0cafoRU3lnxEsq1fG+iV6manxCAPly5KY9+DK\nVp7Jjh3jf5tknthSp7hvWP2iVIBCfvhY/MNwfx71ueztyYXi57ulrNQN+W58zgTyCfiaJOZH\nnibn10PPzWF/CtsK+wXY02Fpkk5XAbaHDcOugN0F9jpYNhNEgCakWGyci45uTGddKEkM1iYe\nM/5GTPT0F/Kvxq1vuPtt3Fx1vg8d8BFJ8fXR2wJ6TFNYqEPQbpwGOmDTWqQyKevsakX1Gcsf\nQGX2NXGrNq2ZEI+Y042S6VT6+GL5wdfnD6Ew2bDFQlXmDhk0Sb4Bg/w/KouRDZUxjAtQx6KI\nX1FbKSfbliPFX6uVh3jjru+kI8mBwdVYRRP4ihcbhfKH+JgwyQwJLORfqRti02LtkoFk96ul\n4iTN9Pdx+1Q8m26pkHY+kTf1cjQxfFXpkBPpq76GvqEyPtkr+w+hPxoGD6zPp5+pth5Q+WNc\nei9qJGtyu3vvUPdjoHcd9BlX/R5vCTj5+lAlrJ8UkjU6dpR/LtKNXz1jlcKt6cv7jK5Vriwf\nv0qaEmPu+F464rTb7yUSPR/6SJuDrqME1oUFEhUtXSH6L9g5sCHYTWH3hd0ZlhZNEdiFsM/B\nsplgArF4108xm/k1Om+zWGdLAzRZLGTO7U10/b7WKvXGuy7BxIEGsLI64HL8D2OJrmVeHfqM\nbtqZPRXxafJRdAILv6ITN/ik8XzCoKnM48pNzLxpFzruNd6lweN+yFwrA3KpfJK+5O+aQvpP\nlhvpQGlh57TDSN1IV5KLmFV9ZiZ9BHm6cQoFLJcnKmMsjlZGE0m6ku3LxMWfetFEDkc97UU6\nVZdrVke0NaGuica76OUxV0GvovW+kJIOgzTFK+Tvujnh3NMxv+SPF2M8GUsMfF6ayaMwYXoL\nfIrecltMHrlDFwsPkf0cOZlfbpFkhx6jTdYBfrhrVnRGja7zigQZcR4cXPG+aaY/i+21AcQr\nXibIE+WN8ogrEsXDjUiemIOosewFdHEnog7RoqfoFTvKC64j/EsZyeMsoY6hW7IQvmK9iS+V\nh99cUBw7pt+IBcJDDvSVqKMlyqVAPKf+fWimqL33GIWCVOMWNV48C53NnWW424tX6FxyDKmK\nUbZdfYzNt8NHN/fG5iQ7doj7ypUf6YAwdvu3j8aKKuriMFjVa6z+UtFAZTx6hzofRc+9CLJS\nSL8or0JiSF9bdyUu7zU66XMubJhAWQLr4m05NEGiB9vfg/0Ydhh2bZs9ocBxsJfAFh3E1raS\ntUx/OPXMHQ11O7+MO932xxS0iQZwDG7ofBVuNxN4nSdes6rEUkxarq9lul5ZQ6lnbq8P7vIq\nJgPQQUS8OmCXOIjzV4WyFseMZb/zxnOPh9PPPFsX2OEOTdP3QNjZ0Bd5UFR+GTznhM8tqTjk\nrMIkblNMTumSJU0E0bFjF0wK+hbDXZmUOqF/aNmTrszqf9/KID/dDcFdDaS7H77BCYYqiXSp\nvuONv/SWPPs4JwnX3f21dRv9gCdNeMirYFwShElg0s4LJibgiG++5KZBcbMJyuczpjoBitAL\nJfaGK2Q6Pk6YQnErdctKAn0nfUrXPXb9yA0af5JMqf3jQ90PuO7FfpOZ595UqR1+F6zTFiAM\nXWXOMSTPzr8Qb+BovULlD///iia6voU7eUsuLHIEe06GUs99ogV37NQ1uQmKBRs6dv2iq44j\n/BCcZNtlRVGRyZy2BKcPEO8rqMc/I3/Ukzsb6nalxSHVe7vtoShK1hOEuwUTvj3qg+slIP8g\nBM4ZO2wUCITEB6BnXVY/t4ThjEhYGmVwJfan0cHkYiH+lBrKvBAfSm3+u4ZQKII4eyG2hTqL\nSW62jaDu4ltUYhBSqC3m5kmKdxD4izGj61dDmWdWi9QWNwTrQochbrE3gtJmhA4lhqCN08/g\nW1dCfYz2+Q2U0UWIW5FJpp97v0HfeRla1VxE2AFFAZ1H2j3JQPtWV0WNgUVDmT+tqUjoBAYa\nSj/7eiC048260LYHz61y6ykVjQRbcQmunpw+LHoG0Te/U6ftdKMu6XMGal42f7TApr5AaNl2\nJTNUVk4/ZyDHP0XZfwI5hXhQ7og53cuV1wequ7Bi/j+U/+7wb6B6RPLplyLlt2FyInfHoApI\n6OAuzOQNw0b/iXpdfRqR9/X2uQhDfSB0pzpGOtA4g5JHCpB1Q8ZIdgyYN73vCq7N7wcWWN5Y\nX7drFElRnxwCM2JNY4AJXgHo9BRG/NPQmjBuyF3Jz20DWf3gotTvAYTmLLTBm2OIk7c84Elj\nD+UJRv0ubSQ+Hzd73s2eF/tvjx3LGoK7UBoHwxZs2+D2FNI6yrTU7/AZgqOQdBPOc4Rm9clh\nDO7CQB5+hDb2DTzVMK75zVDq2RdCwZ3+gnR2hZ2TW5ft7zlBIRDI7y+ExEsezNOjiWW8OMop\nsZqfUN35EexvYcvUu5qnXXOBqEdspgCBM6DDtbB0JWtdeyOZ1taw5FNSV3uiW2vDoPaJZclH\n+ge7arBoqLhktdamxfvh5ug9qtWhKbRk22Cd+jT65o3xYXIMNOq5aOLFVXgfCAaE4xpbGpsP\n0/AtB3Tq9QjzrrLS95Z4/qVixQsH7KhrC9fNx5xgR6zFmjBafGCl1RwtoJ2C0WPDbKOXGKQV\nXVntxyD3Knb1X1W6SmuYR1jK7BMWjjTZju3dJK5wNeiafgjizaaBHWX0sWWpv2HSTs9OfYT8\n/D2WWPZsa3jhLsjfF4XUMRlQTZAdw9zl7nTaXB5P3vjKqK7gUT+rQ9PlkZhyrQ896GohJlcK\nVwy1MOL2Yzb1Al51jYm23EUJDdygnZBvYjf8fsvSPsb5zkifBnOa4EfxmsO3kbcYjrfE0hRv\nosKtVxKLCmn7owysF1Ip80elrxqNaph/NEss2kaPaJdhQrYd8kwL+LfNTOYn/cMr7qWwpcs/\nX1p15/Sx0YClH45y2Rz3fGLBps2SwurH+3vjmjJfU4a8x2yUW2ua+hT0XB8Tragy5RO4te8R\npFhodx9tb+G+Utf2ytZ7uUagYIUu98UUC4t6icWO9Wgsof1SiE5Pv3RUqLVxvUMxVaYrDZuj\n7LDwkY+D+y0xoxNX4TsirY11S6QmD0V9aYEsqi9/iQ31/rHYt0/axOJZ2KI4HBPBrVDuQSrP\nlEjdg1thPmpvWLS30LV9UL7t4N6Lm24fx24y3cIEp1zTKjrmyKbQN+G6PXxRZ9Sr6VTmKir3\nlvASTKrE/pCxAfjEcPnpqVg8+Y/xPHMSDndsVCfqqG3PxTe10pitvi4MtbLUjn2uxpN71lK/\naK6ma59Bu9gU7YwWny/HBlOowz1YOI417Q0ds/EVp8Ow37MZ9QWIE8fTm1hY4s2wdj9nPR/F\nM5nuVbLiPAYyrY0th6Ld0jfo7D7Qsobviw31vJNNtUNviQQO1Cx9vtLEbqi7NBaaKKc1pmW9\nrGlaEP3UoCa1AOpSr9As9FR6i4ULUKhfb2aM1MoB0RMdzcHScEuTeZi0tHmYoeN159ZqvJ3y\nSSy1d7Lbjx1PvmEa1kp6tmw03kQd7RlsDm/3acwedwb7WeD5YVpkHqTnxNwUZ4mOtkCkDm1A\nbJHthylfxkq6kpwNs6i1rVE7G/74kLVohJx3RCbzm/RQ8uVAJHI46uAWxXm4qZT77ahrbdQP\nB+bjIX8OmKPMtUetTOqm/uSNr3tjh9Ge6iTdwim3RF+blpb13GDS/HNDg74j2p4zDpovRBPp\n+9364Y0/3uNZoSVbB+rEfNRJ2jzClT+qi+n7ZzXW7apr2j6oQ+uV6y/GqwPHH0OgDi60CbI/\nLD03tk6Zq5Dbn8MG1qlcT3xmaYFEgz0mPWyYABNgAkyACTABJsAEmMC0IkALJJrL7jettC6i\nrFbEvZAzPbtzKuyxsNh9ZsMEmAATYAJMgAkwASbABJgAE5hZBPwskHCftf3sTiN+ceWSDRNg\nAkyACTABJsAEmAATYAJMYGYR8LNAostmJzrZvxW/R8JuBTurgKWrTWyYABNgAkyACTABJsAE\nmAATYAIzmsBDyN0aWFoslbLnw59N5QT4GaTKWXFIJsAEmAATYAJMgAkwgalFYEY9g+T3ZQv0\nxpVK3vjy8tQqM9aGCTABJsAEmAATYAJMgAkwASZQnoDfBdLp5UVyCCbABJgAE2ACTIAJMAEm\nwASYwPQk4OcZpPwcNsABHy4U+zoe/IrqfEJ8zgSYABNgAkyACTABJsAEmMC0IlDNAom+5nwT\nLH048BlY+i4SmS7YH8PyCxqIBhsmwASYABNgAkyACTABJsAEph0Bv7fYbYwcPgnbDvsiLL3y\n2zX06u8fwp4AuxfsMCwbJsAEmAATYAJMgAkwASbABJjAtCHg9wrSlcgZ3Vp3EOwOsLRYcs1J\nOLgYdkdY+qAsGybABJgAE2ACTIAJMAEmwASYwLQi4HeBdChydxXsQwVyacLtAth+2E8V8Gcn\nJsAEmAATYAJMgAkwASbABJjAlCbgZ4FEH4RthS31Cu80/J93wuGHDRNgAkyACTABJsAEmAAT\nYAJMYPoQ8LNAGkC2PoTdu0T2aBFFt9jR95LYMAEmwASYABNgAkyACTABJsAEphUBPwskytgd\nsKfDngUbgfWaFpz8HrYZdqXXg4+ZABNgAkyACTABJsAEmAATYAIzkQAtgt6BVbD0rBFdUXoP\n9hbYXlhyvx6WjT8CZyA4seNvSfnjxqGZABNgAkyACTABJsAE1j6BOqhAc9n91r4qa0eD9ZDs\nr2GTsATCtbRA+gasDsvGHwFeIPnjxaGZABNgAkyACTABJsAEpg6BdX6B5BYFLYS2hN0fdhPX\nkX+rIsALpKqwcSQmwASYABNgAkyACTCBKUBgRi2Q/D6DdDEK4GBY+igsvdb7Ddh/wL4Py4YJ\nMAEmwASYABNgAkyACTABJjCtCfhdIC1EblfBvgb7I9g5sGyYABNgAkyACTABJsAEmAATYAIz\ngoDfBdLxyPXPYEOwF8K+CUtvrFsE2wDLhgkwASbABJgAE2ACTIAJMAEmsM4RoIXVYbC/g43D\n0osa+mDp5Q37wrLxR4CfQfLHi0MzASbABJgAE2ACTIAJTB0CM+oZpFpgpVdTL4b9M+wwLC2W\nvgfLpnICvECqnBWHZAJMgAkwASbABJgAE5haBGbUAsnvLXaFiiIIR7rlzvt673ShgOzGBJgA\nE2ACTIAJMAEmwASYABOYygQCVSpHq8RjYJc4v7RAWgN7Nez1sM/AsmECTIAJMAEmwASYABNg\nAkyACUwrAn4XSAcgd1+A7YBthaVXfd8BS4ui22D5yhEgsGECTIAJMAEmwASYABNgAkxg3SBA\n3z2iZ4xehP1P2I1h2YyfAD+DNH6GLIEJMAEmwASYABNgAkxg7RCYUc8g+b2C1Anmd8I+vHbY\nc6pMgAkwASbABJgAE2ACTIAJMIGJI+B3gXSeR5W5ON4Otg32E9gnYaOwbJgAE2ACTIAJMAEm\nwASYABNgAusMgR2Q0wdg6VY7r03h/ApYCcvGHwG+xc4fLw7NBJgAE2ACTIAJMAEmMHUIrNO3\n2G2GcqDb62bB0q12T8HSB2LJ/WjYs2EjsDTht2DZMAEmwASYABNgAkyACTABJsAEZiyBPyJn\nSdhDC+SQvof0K1i6qnRgAX92Kk6AryAVZ8M+TIAJMAEmwASYABNgAlObwIy6guT3Q7EHo2yu\ngb23QBnRK76/BUvPI82HZcMEmAATYAJMgAkwASbABJgAE5hWBPwskJqRM3ohw3MlcpiB38uw\ne5QIw15MgAkwASbABJgAE2ACTIAJMIEpScDPAqkfOSC7W4mc0OW17WHfLBGGvZgAE2ACTIAJ\nMAEmwASYABNgAlOSgJ8FEmWAXsxAz8scSyd5ph7nV8O2w96f58enTIAJMAEmwASYABNgAkyA\nCTCBKU/A73eQvoccHQl7G+xDsPQWuxgsvcXucNhNYf8A+xdYNkyACTABJsAEmAATYAJMgAkw\ngRlPYDZyeAcsva3OaxM4/xEsXUli448Av8XOHy8OzQSYABNgAkyACTABJjB1CMyot9j5vYJE\nxfAe7FGw9L2j7WA3hKVnjl6HpVeAs2ECTIAJMAEmwASYABNgAkyACUxLAn6fQXIzSd9BooXR\nP2Fvh6WPxV4HW+j7SHBmwwSYABNgAkyACTABJsAEmAATmPoE/C6QNkGWboW9B3ZfT/a2xPFS\nx/1CjzsfMgEmwASYABNgAkyACTABJsAEZiyB5cgZfRD2l7Dr5eWSXtLwICw9l7R/nh+flibA\nzyCV5sO+TIAJMAEmwASYABNgAlOXwIx6BskPZonAg7A3lYi0MfzoY7FXlgjDXmMJ8AJpLBN2\nYQJMgAkwASbABJgAE5geBGbUAsnPLXZNKJ8G2HtLlNMH8KPnkuaUCMNeTIAJMAEmwASYABNg\nAkyACTCBKUnAzwJpADl4BXa3EjkJwm9LWHqjHRsmwASYABNgAkyACTABJsAEmMC0IuBngUQZ\nux+WbgdbSCd5hl77fQ3s+rD0Egc2TIAJMAEmwASYABNgAkyACTCBGU1gA+TucVh6EcNLsH+E\n/T/YO2GjsOT+e1g2/gjwM0j+eHFoJsAEmAATYAJMgAkwgalDYEY9g1QNVrpSRIuiN2AtWFoU\nkV0N+1VYHZaNPwK8QPLHi0MzASbABJgAE2ACTIAJTB0CM2qBFKiCq4E4X3TiNeN3DuzbsPSM\nEpsZSKAlvGg3KbX98BrDDaSQMUtmnozFl/+jTSyOiIg8XEm5laasoKXE2ymRuieR6PmwGgyR\nSMf6QVV3uKbJzbHyNqWSb1hGfGWfuIU+RFzO6K2RxWdAv0OVkO1Ys3+E9fufY0b3inIR4S/b\nG5buI3S1N1b67Yi/xrSsxwYGl9ELR2jxLyKRpRsElYJuYm5WN/W6MlIrY6Knn/zbGhZvKjXt\nMCHFpkqpYbB4pW9Q4oUmnQnyr8S0io5mGak/Qkm1paZUAHqElBJ1Uop5UolmS6oGMAkgjQGl\n5KCQ1nvI7/vCUh/id32lid2RlTYlrLhmqfeVpn2A+MNKs17pi+u47bUz0RpeuIuQ+tcR7lCU\nZ5NSFt5MKV+SUlFe08jtgCnEs6bMfFQn6/YXytqI3KRQz6UsazCoB08Dks2FlAirqC94EWln\nLMtag+OdhCaPhK6bQEf8SPirhy1LXIB0ArqunQbHrRFuFtKMw+9ZoakX0yn5YCBghpTQD9Gk\n2g/1CfkUH1vK+ltapO8uVp/seqnk56WUR0AfeolMTCr1YG9i8Apc3KYXxkyAOSrUGm7/HPJ3\nDLKIj2WrPlSQ+4aN5K0NkdCn7LYgVMCy1DspYa1MJJajHgrR2Lhk4zppHaZLOceSWlpT5mu9\nhrESn5UDh8pMOLxwwzqhUfuYY4E58vq6MNTKqFhWcd/rlP8Bbls2hfkvTSR7LRE6VFPyeHDc\nAHUmg3J5TqXV9X3D3feTds2Ni/ZEuvsiz+ujTiA9HcGtbVFOeyipzUH9QPlJvMFUvSuUudxS\n+t2apj5F4eEXVaZ8Ijr07mMtkY0P0EVgVyVUK+xHqFt/jyWWPVsZgUKh5geaw7MP1qR2Inhs\nhXyllRRPSpG+sde48cVCMda220hfIq0tUI5zwDCIevM+9HoHrP4WNZa9UEjH/PJXJvoGXVEZ\nbIwyG0T+/xkd/OiKlsb1tpSajv46y94Cj1h82cOQia4ra2aFlmwdqBPz0YY3EUqLo/0qtN2d\nNCmgj0yiD3oqqcyr3PrrxqvmNzct6hPEC9FEL+rVHcnK5R3f1B6JHG5JfWsaa0yl3kHfgPbV\n82Fz49K9dM36shDaFshPEvXqedNUzwR0bWP0DfVKmLrCoCU1GaC6WJ4H6Wg9H02koWNPqnId\nqw+Jdvl9lNlJyhLtaIN9aGP3oF38ABLprcDljGwLLTlSBMQC9Ks7oW/Cs+AW+k95ByLe25fo\netoroEWc0KJFmjBuY5xBQ0bRv5WWqZWG0fOJN1z+cTZeJDs+obJYptknMCBqQrVRnyZMFUe/\ngeEK468SCYyDL8YGo/d5yzm/Duf3Ya2RpTthrDhMk9TXiEb0rciHwDhg3gV5eoMMYIxVmyFv\nKYx3r/bFkxjXeqhOFTEdekskdJCmxK7g0mL3OUJ7KGZ0PpcfoUmc2B4Ih4/Izj+QghJvmoa6\nu190x/LD8vm6QQB1kM0UIEBXkK6FpatzFU+oJ1rv9vCiw5TUf4kebzsMPEPofFFf0E1h4o6j\nIRyF4Ib5iHI6cYl+iDpn9Qd0ludEh5a9W4mOdqepaT+TSluMuBkkgjk6jgQWA4I6XHGtaRg/\nLLZQQqd6JXQ4E1HQ348aDI7of1UK9jwMNpeO+owetTctPlEp7RdIZzOkMzyaR1GP7L5lWeaF\nmHwdCfeTx+oGOcrqRrIbSU0cCYUx4GOII2dwwECRwWLl51HjvYuFWAXZhQ0tjEQk9GOkjyuw\n6JbBGCHBkbRBzog4HcDgmPzGGPL3+nnOqWwoLumVhDstJHLkUFjXDTqnMIhgUUbyRDpbtlSu\nrlvh9Cl+Ns6oP52Tu2u8+pFbNrywEMout3x/Nx5+bxZm5jvRoRV0lVo0hxcfqmvyt9B1Lk4L\nR5Py8Wh8+FgMniUHfZJXmZkfaI1segEy9J8In3OVfDTfEnMv5Uyosm0BEG8HeIz34mhiC3Wd\n+kF1m6q4ujIal+eXWki3N3TMVnr9/yB8B9LHd+hyZMBZXBU1+s8ttdhqiSyZrwn5K+ixI4g5\nbZkUUGjLuXWHBJKx3YVKIBAtwDZC2sNOmyTdcwyF9To4hYK2LNGWcSbQnrCiRxgEVGgnFB7O\nWAzj/3OWyJzVZyx/wCuj3HFbk70hcjnih71hXV2Q6svSlKf2DnU+6vVfW8eNjQs2qdcCP0fe\nT3HKMKceQS8TugfA+yllZr4eHVpOixoxtvztcnPaKKHNNXb+R8qY2KO/xmIUE81z0B+9iP4M\n9UAegHSoT0KHU6pty0eGrfTnBwdX0ALOl2kJL9kVFZ/q3IHZtGxVSR/a9BlUlrowmkj+L9qo\n3d8XFt4RaWuqPx/xvwF/RPOONdAbfRpc6536lieC+lI7ktO/gK/Asp/St3mo7yLvL+TyyPJ0\ndEwoy4KOKYwPpXTMS9bHaVt48W+F1E5DxrAnNrYsUdJ3Y8H82WIi2xoXf1Ho8krwafSGgTxq\nXUBj9+MvWcI8UxiDT8lI5CJ42eOMyxLBUA+xeJSqe9hK/kf+hlSzWNQaiGg/RjgsQu0+DlVJ\nIDy2FHEAg3aNlm6f26mi3SuMffbm3hA8fywyyeVSr78MYYv0YepP0HgnbMTuUJiDnQ79w5iU\nMz/AQkZe3pvou0iI27DZN2rampacDr9LoEc79HH6HJCSAn2OehYTl6/H4l1/o43ZOhX6KTJw\nKnTwzj+ofcKq32aM5H8NiB56jIRNaQJ18KaNj/1h7f6rdPCp7Yu6xmYKEDgDOkypBVJbeMl3\n0WH8FHrRCoU6iooNOp8U4hqmaR7RP9j9RKmItGOEHah70Im1oi+nxjXWYOGBXvBDMy0P6R/u\nfNMboC2yhHafd0Rcch5Tn0c6Wynuisa7jsqJG15yGfQ8x86iI8DrPxIXAwC8CzJww8B/TNok\ni1hg6Hg+ZRiHx8Wfer3y6bilftFcLajdj46crrpgwTlxhnQtpufEpTp+yVDbRDnFZcY8Umny\nIEwoMNDaWSnInFK084oFybCy9k6M6woFSVsabo+oB1FHd/fLj/QgCUXjUd0W4k1ccvzM4GDX\nBxTWa+jKja7rdyNDEcgo2j6Q43eUqT5TaFOiPbL0bKSBiahd/gXrsTdN73FZ/b2BqzxGGpgg\nI3dCfbPX6PpVeTEdelukfhnCdSBSzqaIN66jO02gvtSb6LzB6zfZx3S1ExNxXDEUs4qWo6NU\nlgdOpPoyroQ8Xbb8K8hMloW9YEBVsOvBmEVuITEUD/1X0lTmfn2J7n8VClPIrT2y6HO4Irwc\naWGNZG8GjAkG0bSZgCtmyeOwAMGiPdfQgrJBC9wHEJsX6xtt/ajq+DQUD1HsiX0pHghFOj4Y\nNYaPL6Sjz2RzgmPsegkO88gRWSiUB0dNEY0aXevlRMYJFgA3YLr/hRLx7ShZIXbZx5BIpARL\nGqv6LJU5PJZY/gxFbq5fuoUeVDQ+bVQsnp1IiX9IH5s6lD273hXsw9yMFuFQQjqJpT5UvYpJ\nx6GG0fkxugX0D6FO+KB/KFr3qM9BEOtidCE0/2ormr+s/E8yaXHIQLLrNYRlU5wAle+MWSAV\nHVyK5599ZjqBtsjiU9Bj/5QmH7C+JlTEBp1SHfrCZgzsd9GtRcV40SVtVMCVGKna7TjFAtLC\nAQuIQFDdTZNVN1hbZOmdOKbFEfV0ZMcY8iODTvTI1siSq9wA7ZHF30CM72TzaMd3vUZ+szHt\n/0UZuGFGIuUdwL8OnfeOwUjkFnjltbeOBj2g3YW8bVq0c86TN55T0nU88ddWXKitU31SAe1e\nWhyVKjNXR8or7YzXaxp2sfZrcN2r+W1rUn9AHfW9OKK0SA8yRdO1F8VqywZN3i7EnkFvOGo7\nuqbdSXmHiIITCzs8ZEC/udhJvkOIo3IW2fYVUiyOHGZF67E3Xe+xrXwp/b2BqzyGeNx5iB10\nIa9oaVr0b+XEtDWFaCcat1bmt6fcmI7uuOlH/IauOub6Tt4ZXSHXJRa5pTaBPOpkeVCd167D\nban3li1/T9xih1kW2f4cxxUtjkgWxUM7Cuma/hDdGlhMvte9vWHRPlgcrUD50FWuomnBD1dy\n5IGYzN7gjZ897kDbDf4V9XqLUn0j6Tc2bnkXigdD9Q62lI4C7U59Ggvy68tLrTwEFkdUH+bZ\nWuBfkZi2N/zaEP4Vb5jWxkU/oMVRmfh2lGwYaiuq+CIAIRGOxqo23Il4F11VobHWHnPHuXkH\nuejXFK44Fe/DsjoW5eDN+tjj7MbiPFSm24SYH8AVR2zsypMgs1Tds8se4X6EPG9Qqo5l/eSG\nuCUVZXZ801gF2GWmEsibsM3UbHK+KifQgR0m7f+hqxpX3UDnRJPappCu6CpUQROIRC6AB105\nKtqRuRGhTxALic3aIhau+NAzPwv2R6d7BHWsbphSvxQOAb/WIDpm04QFaxVMtAtfFSolpxo/\npEOT233bw4uXeuO3N4W+jQ56cztvXg8+HkPALj7cSgVWFddLioOdyca2yFY3jBFYoQMmIkfT\n4tpOv8I4foNBNiYmYsf2yHa49WXU1OviJ5hANsG/7MKGZCDmvLZw21mjEjoaMMm+xg+z0bhr\n4wg39CrtWkxycDteYdMaXrwzyuPbyFNZJqMSlIaF5m9o8jTqNnlHIaFfjNToypEPnUk/unu5\nmni1zRv0ttsRdr1+WYFkqXT9OuheWTu1J7fy83Q7t1d2W7juTMjY3qnXXq9JP3Z06KjVIjsk\nOrZFJg4jrpVkxgm3dUvDghMpPG2c4HnXCyuN76ZRSXiEoTbSGhJ1F7ZF1HdpzIWWORs3rjw/\nv5Wk7UdefljIR/UUu7dFNvuR0z9Qf1jWUAkgbtl2SQzoLo/WSPP3ygrlADOGQGWd2IzJLmek\nHIG2cKgDC5tIuXCV+FOnheeKFtHDnWPDdzSg8p1ecucmPxINplL7Jpw1oQeLLrzyo3nP65tC\nl9Rp2r973SbjmDpY3BRmL+6c9OgZn2/7yv9kKDqF06hmkM3GkfbEopqsaZr2H9XE8xsH9aPO\nWz/s59KUWOynftjtTcrvuGm3hutOxMKr2T2f6r9UVriK1Noa2eyEYroiyNcxpcGtUZUbkos+\nbbPWxtmHVx6rViGx4yzFqX7K0U2Z9Cbjnq/N36we8qRyO+h4Wc2+WNjsjPBlJ52j+cE2htC+\nNXqOI/SVkFHRJDcn3oSd4K05+TpWmVY4UlfV1ShND15BSdbbL6SofKPIt5r2FWntiyiDb1ZT\nb32nV6MINMZC37NR/5xnoisR7KN9gQtCf4Nu4atEMoeZ/gR4gTT9y7C2OZDiCIxOtdxptURT\nZH6+ku3h4AGYvPlOB7OFNjz8uzN+98gO2vmSS59jF+hQ2KPRkRbdpS4tYVy+O9EDryShLbJw\nB+g/5r7ycUnnyAUJ0MBJb7oq6FnaEbd9iQOrqWelxRb2xdWiubgyuhn5qsbQwYVDlXGVchN6\naxiFwi4zFgRqmg3meGZFiRILGXk0yrOqPOGGqhJyy3Ct0ru1cdanq4w6BaMprbUxclBJxcAY\n9ZieQajYoH3RbW6HuhFa6hfgqjpuO55ChnTEM2EjOo5HNfDZzW98pE8L5dnZeNrJzrlfMX7C\n60jQHqv8RFrbYaFzC9hM2MIa8mfNaqzbY23nk9OfHAK8QJocztMnFSm2Qldcs3qBrdsMXnVj\nT/pyIeiborPBw5v+DPYa8XpjvErbfiuWv7g0qGQ7fTnXX8zahKbktYieHeSUvhnyYtZGMksp\nRwAz6l3Lhcn3D4c7NkCR+V7E58vxdx6w2wpeSUxvVayifQhLC1rZ9kavvfa1k+9P04kITfri\nOtKWJWRvVMKvqJfNQYnNiwaYKA/Nfjum73KcKHXGLVfTCvTlXqlyMzzTEfS6VHSMDatZoqON\nwspggPpGdPFTzOCNi+4G13g0w1VSejYLzduvwS2XWVP0uV6/EouHxytfeHwagwdMUkG06TEe\n7DAjCdRsIjwj6ayLmcq++rWmOcd3UsbsKFr2azdxHce3wSJDWpBX3QCKIQav0qVXfq4dY6ZN\nO23LzkM1g+Ta0Xu6p6o0M+E3D8FEml6DPKnGtOsF3WFUXR2lzQ3NHGlvQ5OqfI0SQxstyh0d\nRlWLDZpwY+d+0nngajXaexXdXI1Y1loM3nhRsu/E4oj8q1rcDIh6W7aWsehzBFMSWr+Il8x/\nZbyrG7tc2QCTco8n7pfwT80ymLg8VyRZw3f9ivZPFUngQNOGAC+Qpk1RTY6i6Bafo12SWqWG\n3bKQpdQr+fLwKtFXMZj6vhSOLls3TfEq5OFjqf4GGju8Eu/hE3AvIKav5xjy9a/mHGmmBpLv\nr6a4milfpclsNXI4jj8CVO7SsP7uL5YQ2e9u2R/D9Ru1qvB2nRwUb1BkS5loHzLnjXSVCKW8\npnTpvIqW6nnt2nIl6Y87DF6pi4nZ88XkoM94vZhfGXcTTf7lMmFq7q009QpWC77LseaK1Egg\nvl00pi/3isYnG17BQtTHMyDZ2Kina9xvgaWGhl5fG/2zNx8Fj5XAN9Vyv7VTMFxZR2lQOy0b\nzBMgGz7LFRGpDHzF94iq8FAFp+P45JdrhTBGgmHdHnDmHyNufDBzCfAEbeaWbVU5w1es/4yI\nuCOpRkYqo89496F8af2DK57AYgwDTuWGOj8MKy/1DXe/jdHhrspjekJaagW+yPdHuPgexD1S\nfB9C8Qw2ku9xPxhL36uBGxajk79Q8638NI5g1xgspqMi+5FZv1lRlvyDI8NvVF/hkYaJOc8j\n7lfb+4wP/o5nHuJ+hKAu0YdGn8h+C4Q+8qLQlif7FkE/Go8Ni3YdxOLw1rE+Iy49YFVN29Wx\nMUJ926SaWDz1CMqxf1ITnaDE6ApcdCj5aCnxZsa8DYtYXwtClCdtyN3syrW/FyfV49k24bqu\n3d+sjvgAeg0MZN1elRipnrbjKXE9ZFQlouJIUvQijZdhJzihijUqGxCq4nt54k0sHWtwlW9s\ncg6L1weS3bRBy2YdIMALpHWgkP1kMZrovhvh6SpSNZOQnKQgI4Vd8IuxKCgkS2ECdwG6Xz+3\nzGASKc6lRGKGhdfA0ttnK+vAKRwG+GR0sOvC3sSLyyHiIziRvMkyOj50eoE3MdxGhbxUpr83\n3rp6DFK4GOl/QYnPvl9YLbN0JvUTqmfVxq88HpY2yjpvNDzajCV+jDpKk8eKjWWaIzL6jK5V\nUP0JMPPTxipOq9YBbT2leqzP6H6wmGx80f4qkPI1AcrWGXl3X6IrO8EsJnxC3HtMfGb6Ir/l\nSKogTqaa+j4R2YAuuHgk0H8hPyVM3/CKt+C9wuckVTMz9kfJRyVb1DdOqVu8tExG/mxUweqP\nYomupX7HLkotGhf4WC1+E8lliN9PZULntTaQmkKPR2MVjbUly7vWaY9TnqZMSd83TFXKptJw\njl6mZamR/nWcunL0aUCAF0jToJAmWUUsJNILsZigTqb6zpF2caT8Zyz+wv8W0z9mLPs1pgGr\nKhlMoQtNFHuiRmdPVl53DLNl9xXMJQcKtxM0LbUQcRH2ibQwM6dgkCk74XbjFstDJe4YcNJI\n9Ce9Q92PecP3xpf9Ca927nby5vXi4zwCYEQMn8WUaajSMnHCPYOJ8eV54io+jSdvfAUz1f+o\nNM2KBXsC0oQEu+6/7k104wrjqIkmXrwCZ49X3j7U9bHB7r+OSsBl0pS1GMyGoX/1bdkrcIKO\noV+GyjaTEpg8FjcD6AKEMr8AZlbxUKM+drnRFRzTOn3UdXKPoonVv0R/+nAl5ehqRjzQfw6g\n7j3hJ54bv9AvsSBTyK+UWzaOfDaWWF1RO0pL82wksob6vVJyyQ+yceuj+mb/cOeb3rDRxLK7\npbCuhb+vDQKvjHLHlC8y5cMJ6CjOztexXLwS/soy8YkHmArSt/XDP4yVXR9kZfaklMwc53eR\nVUFaNDpi80H9rddIXh01um5CenQFfdxlUFHa2cxV9R+lmMLC6Bexwc6/mkJ9gdiUEwSdsHGL\n2xYruOLkMPgzFrdYnLJZVwjwAmldKWkf+ew1bnxRmOYhiBIr1nlQh0cmX2zWFTufQvxNxYeP\nthcj+YFGz62ogW/UKLESkuitOQXkZa8aKKlujBrJ00aj4hmR7MSXdtmLDjRZmegsLfWVvsGu\nW9z40aHlD0tl0iuDE8Xy6Ljbb/MprJv9ph9KvuBkDR7YASZv9bOY0fXfbtreXywgv4R0lpEM\nhJywSaytB6kyzYyjt4kJ5kPKiM9PmxbVyyi5F8uKEwcLffGvqNG4d7FwlbpHUc+khS+uO6ZQ\nPPLKd3fDO2VbyN+u8/C4JmYkz86PT21HGclj4P8gZNl1KT8M3CHDrn/XR413v5bvT7eDZEw1\nHyzWFK3n+ZE8524ePE5VH5KsgpExQUH5rjHN9PyBZNdrBcN4HHuN7j/iesZSiCvIxA3qpPeh\nVOkD6JZW133yf1dleo3+45D5VeV0tnXLTtg+FMo6SCWSh5cq//y8OHnOd7YnvmCcRB34AGEq\nmvCSLDLZdtR/YJE7AcakFY8vX2NmxEGI9yaiF0wLNSFt11slzsFG2f8bIwQOvcZ730Def0M6\nwIzpG7PORepUIYFeN7vO2Q/bF+UBydgkxPU/Ib6D/vtqb/TxHvcNdV6JWyhwdbr4IsnJHwW5\nEenjjolRE4svf0hZGfpemN2HjPqMPSJ2KPtPkJe/UH7I5ody0qL2dA/GWcjNXinE8ak09haL\nly8n/xzxsuUs5KuQXbC9kn7Z9MfqNSoPkgqYEZlS/Soa7/ouBemLd90C9yWIkSra52XL/+OM\naR4IwbcjrNuP5qQCd+JFde9m9K9Lcjz5ZMYT4AXSjC/i6jJIVzssw9jGUtbl6GQ+zpMSx7CJ\n+6jlI07nYXtTJwe3Z/FzKq70HBETPf158QqcdiZ6E53YDVOn4NaZJ6lDcgNlj9UjWP0cE4sv\nw65Qz5jBFrtc5w5bmT0R58Vs+m5sGnhsWY9aRnqr6OCy60Z9ske0Y59UYmskeC0Uj3n9cR6F\nvTolkpvgNkHqGJ/2yods6jT/IVT6s9is+grOX8qJb++eynvR7e6Pwe2H8IO4QuaJNCbgX8Rk\n6Ciwe9iRawf0plcoptetVFj4ZRD2fkwqMdAVnrDkyrJvURjMdbMHt5xJSn6a+edufHKHyYnr\n+tEvFpB44YbISc92RyQwofvgT+s1Og+llyYMDC57HPVya7hdCjvmrWRwozj9+Hd2r9GF71Vc\nW3YX26tLsePewc6LkYXdsEtJt6yN1NERPZXEla3R21Gyeth1ZgmeqTkN4Z7zyoY/ykQ+YAnz\nkJjRicVR4VuXqA2hLR0J2aj/4hlHri2K0qOFI8Aejnbw1WIT2P7BrieVoeZB7Z8B9odePXCO\nSfNYjhSGdEQad+Dol+DZ643n1cPr7sSD9ygL200IPE8lX4asRE546IPyv0wZ1rZ9gyueyvEr\ncRJLLOvGbVnzEIQmQ1S/84waQFoXRY3+re0NnzzfyT+9NY5yRBtXY/qSHF2Uevur3iEAAEAA\nSURBVB/nP8bG0XZRY9kLpcsflD2GyoQ2fOCIvI8aOgfjG4Q5vHU00bslCvYHcHtrNAS0gvGe\nkwvO0Qeqs9CO0L/e6ut5OLra0mus2QX167/y04Ib3gJm4VklsSv6PrpKWsSsyqDv/Doa22ew\nSPkbVBwp56y+8llE/Jtdhz0SyI+MxynnEB7E43fCTG4TNQrzyOqobsM12F3Q91yZI6BGJ7HB\nrh8qA32KkO/n65s9l7EMNvHQtunOhzEmNrj8tqQyN0VO70T4gv0r3Pswfl1qGcPzcPXjeFx9\nxaalonFmpA+jtMAXbU8uQnkci77IGE2sJ0Vjr7IsuCsa73PiUVw3rPfYdkPfAs5YfGR2R93f\nDiGL9mEZS5L8CyEjp58hOSQXcT/Av5xNDpxTH7pKSfPTWBydg6AjuiGvy7FI387C4g4SPPkh\ngXafc2mvMbDdAOY50O0khPs87nHO6dvtvOKWX+T9BJTBIvSvqLds1iUCaBdspgCBM6DDtbAR\n2NwJxBRQDirI1oaOzSwZXB9dUKx/OP326ISuI9IWqZuDB6CDViK52r4FZhw6t4gTWmS4YQ6e\nLbdiRj/S8TMwfznYWj/4KbxiYo600q9Hh258FKqMdOBl1NLwgcI5StPapSXW4EUQ7+THpW9g\naGF81wSvCo8aGWKQ0/E2NS1cT7fkpro0k73GIPyreePR8U1tkfAcdM56JjH8nhaqa8EXP+cK\nXcf3YSw8l6I10zvO0hn5hqyzrICl6jKa+a5hfBJvqd9kH3xFZlPcSviaqam38VnxjQvpQh8j\nzWjaIfjkzDy8s/Rdyxq+O4BXsWdkaEMMswMDyReh+xPpxsYFmwRFYCNlWvGBpF3mqabQKfOC\nweBu2L1MDA+mng40hSLIc31Gpt8zjFgqUrf+YYGgPAhyIuD0vGWlbxtI9rxG7OkDpjJo7oqr\nMbiooT7WpJ5Mi8yHg4MraFIoSK+00OfgOxMRU2mfqMHkW+XqE8WxTLmnDARmY026um/QfBjl\n4uvlH5S2PzO/vjm40U56KLCllbE+7BtOP5mtC9QWAnMtpQdUwnrHfeGCK5u+86KFQ5vhS6jp\nqKGBcafvtk51UIa1OZo0M4XqoJtWqV9iZkptg2xbfh/1fFWmvaFjdko0bKGr/8/eecBHWpX7\n/5x3JnUmm8aC0kG6clFBkeJ1UVBXiqJGtmTRK2K73uvfckXvtV57v/aCBckmu7CCiAgoKNjA\nhhQREXDpS82kzSSZzMx7/r/nLclkMuV9ZzLZTPZ3Pnkz73vec57znO+pz3lb7mkqYuyM0rek\nUoMyAfWd7mrdgPahdlN2JDE2Pf1ovFkdgGp5BD5c04OF7P3wbkbYj5k/jk5edLlEmusznPBI\nR4zANdHOlj2kPndFjH5sca7sHN3U0XLggZFIGyZEdrrJTv91eGrbw77iy/HX70sw39SZjGWi\n0Ug0atKPVdK7sPzjqG9o50fmMtboePpR1P1rZVEqr7/OZz+fBL7z9ZSoadnTzmWSE+nx+zua\nuw6wIvpIS+tkdjLyxwl14YLJ6nwJwY8K01LqKtzKFdaVHmvy+6WRyfTv8Q3yyY6O6H6RnGmT\n/rEpp9rc8Ss4j+p0DJun2fC6q/2sM7RqfgYuWdw9NtX9Y6W+EoaR1d288em5iDoSLyGK4MG3\n+5q0ui8xVerlNHPjjElNPeC+sXNWlzI7Z3R0xzv3w+cNLYlnqyYrv0+LxbLxJmP2zOVMSupU\nMYaFdbhwHO1p27h3Rtn7awtjiMk+oSabtvt9aYc6szcSa9vHHdea0acE6UOD9zndqq9TxZox\n/8AL7ZP2Awk1OG+xoQwYnnIJyJuJpd4ejw39ER0J1E5ADCSZyMdqF0UJJEACJEACJEACJEAC\nJLCkBMRAkrnscUuaap0Ss+okl2JJgARIgARIgARIgARIgARIoOEI0EBquCKjwiRAAiRAAiRA\nAiRAAiRAAvUiQAOpXmQplwRIgARIgARIgARIgARIoOEI0EBquCKjwiRAAiRAAiRAAiRAAiRA\nAvUiQAOpXmQplwRIgARIgARIgARIgARIoOEI0EBquCKjwiRAAiRAAiRAAiRAAiRAAvUiQAOp\nXmQplwRIgARIgARIgARIgARIoOEI0EBquCKjwiRAAiRAAiRAAiRAAiRAAvUiQAOpXmQplwRI\ngARIgARIgARIgARIoOEI0EBquCKjwiRAAiRAAiRAAiRAAiRAAvUiQAOpXmQplwRIgARIgARI\ngARIgARIoOEI0EBquCKjwiRAAiRAAiRAAiRAAiRAAvUiQAOpXmQplwRIgARIgARIgARIgARI\noOEI0EBquCKjwiRAAiRAAiRAAiRAAiRAAvUiQAOpXmQplwRIgARIgARIgARIgARIoOEI0EBq\nuCKjwiRAAiRAAiRAAiRAAiRAAvUiQAOpXmQplwRIgARIgARIgARIgARIoOEI0EBquCKjwiRA\nAiRAAiRAAiRAAiRAAvUiQAOpXmQplwRIgARIgARIgARIgARIoOEI0EBquCKjwiRAAiRAAiRA\nAiRAAiRAAvUiQAOpXmQplwRIgARIgARIgARIgARIoOEI0EBquCKjwiRAAiRAAiRAAiRAAiRA\nAvUiQAOpXmQplwRIgARIgARIgARIgARIoOEI0EBquCKjwiRAAiRAAiRAAiRAAiRAAvUiQAOp\nXmQplwRIgARIgARIgARIgARIoOEI0EBquCKjwiRAAiRAAiRAAiRAAiRAAvUiQAOpXmQplwRI\ngARIgARIgARIgARIoOEI0EBquCKjwiRAAiRAAiRAAiRAAiRAAvUiQAOpXmQplwRIgARIgARI\ngARIgARIoOEI0EBquCKjwiRAAiRAAiRAAiRAAiRAAvUiQAOpXmQplwRIgARIgARIgARIgARI\noOEI0EBquCKjwiRAAiRAAiRAAiRAAiRAAvUiQAOpXmQplwRIgARIgARIgARIgARIoOEI0EBq\nuCKjwiRAAiRAAiRAAiRAAiRAAvUiQAOpXmQplwRIgARIgARIgARIgARIoOEI0EBquCKjwiRA\nAiRAAiRAAiRAAiRAAvUiQAOpXmQplwRIgARIgARIgARIgARIoOEI0EBquCKjwiRAAiRAAiRA\nAiRAAiRAAvUiQAOpXmQplwRIgARIgARIgARIgARIoOEI0EBquCKjwiRAAiRAAiRAAiRAAiRA\nAvUiQAOpXmQplwRIgARIgARIgARIgARIoOEI0EBquCKjwiRAAiRAAiRAAiRAAiRAAvUiQAOp\nXmQplwRIgARIgARIgARIgARIoOEI0EBquCKjwiRAAiRAAiRAAiRAAiRAAvUiQAOpXmQplwRI\ngARIgARIgARIgARIoOEI0EBquCKjwiRAAiRAAiRAAiRAAiRAAvUiQAOpXmQplwRIgARIgARI\ngARIgARIoOEIRBtOYyq8rAn0xDceAQXXG2WdoJVajf3Hsf02o7NbJia23Lmsla+vcrq7fdNp\nWpuXK0sfqYxpQXLbldZX25nc3VZT5FT4PRd+XUrpHUbb16vszNDI1LYHfLVWtWw4OBrV/620\n9SKlVY9CBG3UozljrpAwlrbW4acXWwTnslrpB7O2/emxycHz5XxvfMMrUS7vhPwjUDZtRqlJ\nY9SY0mYVwq5y40lIcTijdA7/kti9ER4jWqujkO4ByugWxLeNMtPGGPjrNOIjgskijo2wzsIL\n4j6B/RuwbR1JDtyOX3G6q23DmVbEejv2nw457Qg3De87jbG/OpIa3Ap/kRHYdbT0H9rUrN4H\nvV6OSB3QHemDjDK2KAX9hAeScpzofX/O6PdbWj0Cz1dhexbCdyCfDyJ/jxil27UywmgP7Es5\nNWHLQQby57gY/jcjDoI4fuM4fhwM0pB9tzG5m7WKvBKynoEwiO+wTCujnoRaI/CfQfjbkcnL\nRyc2X479Mvnta+uNNb8GmTgd4Z6DrQfpiD4QZ5L4+Rv2vp5IPnyJUtc7+vXE1z/dqOh6+D8f\nYZ+GME1QVPL9BNL+M6hcCz06gelNltYHwx95gdMqpW39m+xM7sNjmaGb4vG+1S2qdT0SOgX0\n9oW8JOTcmsvaN1pR6zTEkK1Nos45DR3MsJtXpy53Ik4TKuoM/MDJjLmc9N22yf10NLVjG/RG\n+Vfrjm7qiR9+JkpC+ByGNCwU/D22sa+oRnZv26b/NBHzesg6QPTG7wQK5wY1k/nAyMxFfh0O\nqezRTV2xQ9+G9vlvqDL7oaU0Qcdx1K3fGzvzkdHJrTf3xjacjAJ4O8oZZaw7kDbqLGg5bcmp\nu1JHJrGhP3XamNTHHcj39dmM3jI2PXCvhF+urrN90zERbb4OfY9Evt36hvYJfVFX9Bb0YQNj\nk5v/Elb/NtW3V1us5TvaUieilaEugpw203bO/M2yLLQPI207LnLRprPgOYK9MTlEX5y0lf47\neoqfJJIP/shvP0F0kLbRZFrfCRlvgKgepIOEHYc86VFk7Z/asiJo+tIR3YV+8qcjqQTq+lXp\nQvmrWvoPijYptFf1AmwHY5M2g34D0pVKQfYtaHOfHJseuranbePeJmptwIkXwn9PhB3F780I\ni3ypwxHvIGRUuKI/NduR59VoEkfhfNzp35T9C2VFxiU+NHseKlg3zqFIMA4Y+2b0CaOoXnuh\n2h0FWavQN8gcUeRJv/UAwo+hDHu8dnYvZI4h571o0/tB3RmEvB3lcNnI5MBPvXj4cV1XrP+o\niNLrkNzzkOAe8PWYIYaTvroNcn+USG3+Gc4h62tbumM9fSioUxHwEAeHMXeizK4YSd6B/u6m\njCe64GdNa1dszz60t9N8HkhhO4poAsd7uH2ZwxXpmUsTqcGfFwio+bBU35k15pKx1OAvak6A\nApaEgFdBlyQtJlKawLk49W1s0pGjQ2xEd3p7T2zV1zB5PxuVagYdXutsLoyaRm+HQdF8L5FM\n/6dS26Zmz+0CO92xjUeik5eJ/yEyGGGAcSe4xhl4gMaZ0Gd9fweJyyyCAeqzI8n0x7pjzd+C\njH45h9/ZdotBUAwA9PMQU/qcTOCTCLenhCuMXxhPjvOdpOEf58f1/eS875+/75z3yh6D0qCd\ny30pYlmXwn8fOefHkX2J5/hhAgij7tSxyaGb5Li8W9PaE9/7ewgjhuE8eV48kTnLyvObTcs9\n1hngcyZsvg7in6+bH8//Lcxj/jFygcmEO1nKl+HL9v1w7BgzUO7erK3WFZscwqA+3bLUd1EH\nMIlRET+ur4f8zspVMJSzufW6KfJ61DCpJ1KfvInoXAw/vO9TKHPuvL4btQrlpGFwmGY/HM5j\nYu4awCLD9/fl5f06ovLPi4d/7MrROaQxYtvm30YmB6/Kixtot7tj/YnaRAcR+KnCHM5Z8MuT\nPWrbNmQPXVlJ4Kr2jc+JRvQ1mJbJQsG8fIneTnyjrsLkTYzC2fbg+Jf51xlb96KoFb0MEsSo\nLi5XaZnIu5N4ZMIXJ+n6vEr6Oe3LNKGWfzEx8dD7wkzyfZl1/o30xPpvhH7HSDqF+RG/Wb5K\nXWYnk68fVZdh0l/ZQe4FkHu2HzJfti8z388Pl88V+2iHjoHwsMqajYmpzTf44Ur9It23IyOf\nh+ZYX3CKa7bMJE5h2jhGm5G6rhJYBHrt3IS8r7k73vJ5GBdvwbkM8jI3ZuYl7suDlxjHWCDB\nYk1e2Lzzs3yL9UNuOOS1SP+Ur7fsl+KWf65EujBapP/TWCjKrhtJbbmtR21cpeIW5jfmNbI4\nUqi7nxZ0lriyuHZ7ztZfiVrqY1BWjE/p+9wFA7+80N/ZKrtpNLnlV6KT77rbN661LP19jHLo\nM+fFm22zc+kZpKdRhuqWzIxZN57efI8vp5bf3vgmzHHMp0T2/L7TWRiDjaj+nMuo9ct9UaNK\nBjLmpLEdj00WVhvaoSLTLQMCDW4gbYr1xM3v0PkdhsYvK+5FHTrUGXROfx2emH7+rmIk9bT1\nH4+u/Vr0zk3IuzOBKwqnhKczaGBlH6Nup9+xlwha0tsfyKqNX1JwiBNS9hgwkH9nzley3/F0\ntW1lnzKaHLqudBKOcfRHnH/GzsxXaf2CnUF+xeDIIb8vzc9vT0f/G4DqW5V4+an4ZYxjGHz+\nCr1/NvyvyFsKrq7eMOmM/frh1OAPgmra1d5/BoxHrCI7ExyZVC1wc7LVOcOpgQsWBPA8ulo3\nnGRFI9dWYu3KU/ckkpsPRdTZCVcpuZ3xja/GbOhiOV+Opcgtd76U/Hx/9BNoX+Z6LEC9DH2r\n1Knl4HRPfNOj0Gt1kPwBg0z8789MpJ47oX40XC4DvfH+61AALwgit5wc/xz4ycIGLjyqV4xM\nbparH0Vdd3zTV2HUv7WadN36g+uHxpw9kkpv64m3oM6pYyFrwUJGscQlYjXpFpNVbz+oijsY\nVCZj7DObdOTLSG+/cnODfH0QV+qv06ZL5dcrL/AwfcMTg7j6hzskYhtfa7SFBTMHU8kxJj8t\n2YcsWSSbwmLKibiD4a+F58Mcd8f7v4KE3wy9S471kh5s8kltMscNJy/6exj5DRB2RRlIRQeW\nBiiExVRxNYQdho0sqqQK4+j8SsaRiHYGAqOe0dPR8o0qk2qoaKtUX4+K6p9gNUtW4Et2mOUy\nhY67qRbjSGTLICOuXDr1Pofk0XFWHrg8PXFvSuSKWGz9HqX06ontJXWooY0jyRvyi5VRHbV0\n5DI/v53t647B9PubKDFZoQ5Ubn44/AaabJXi6vv78vzjev1KOpJP1IzvdMU2PDNIOp2tmw6I\nWGorwmJluXS/PSfbnN/Vvu5ZxWWvacXtgleHqJsHdcf65apVWdfZuuFAGEdbpfScHJYJXel8\nmaizp5AOyl2v6Y61fmzWcyfv9MT7fwaugYwjURUccEua3qcpHruonOpd7Rvev5jGkZu2U49w\ngVtfDIN5v2Lp98Y2va5a48hNwylpadPf7403fx9+gY0jP34xvZajH/IYlXEvqi2Mf2b/oMaR\nl0/narlDq0TmpN3jPOqLtUVuUZS+Q/oQzz9Qn+mLRpwmGGXtWltXKXV6u+8f9rc31i93z7xF\n8l4urqSHet5udBPSW1tyQbmcDJ5bGgI0CpR6N1D/HRue/aALS6Czvf/ZiIP7iktfOZonU8IZ\nvak7tv5f5vmvwIOmWPN5uKEhhg7RuT2g2iyWGyiqlbkz4gXNh4TDoNrWqiMfKqanPGOD2dRr\ng8orJmM5+TmDulEtzTryQdErYjV9ET+YA4Zzjc1D436lCG5bquwiUfMJwCl6y2Hx2NqAaVHZ\n3R17n484cnU30KRKwiHkupgqbbyLDpEm62v4wfgaTK7EqdUhJSzEqHfJcyq1yqo1fqfacCBk\nnOzQCiEM+uP2Y31ST2zji0tFw7NFRfuFUuGD+nu6RnSTVcTIXNOKm78+HzY/pdKG8bAeshZl\nMaNUGjvbH2Up4160nvnEOKHx/Nan3L5Dbh+szkFHGDVmdXdH539UJ2FtC24slPoRaKx36rlR\nT+2J9byluvQYaykIrHQDSSbhx1XY9vJAPycv3E4fYDydlv1PJKL6cfUIt3cEd5iJZCxlbQwe\noyFDysNGrw9sODZkFuunNAYaVCt9tlJrFqzGGSN1p/rBsH5a1yAZCwdYEt3U3da3L3J+ojtg\n1yCvwaI6EwYUtn8VrbT6zgrvK8En8ORSZGMiBdl9TymUi74IL3hAiJCuJRY5r3SUTTHM206p\nRm5pmcHOICM5rK2/Jljo+oWKdFjvr146bkLS+nXF4uPq3UZwDWEcF5NSxk/aodGvRlVszQ/V\n3b7XyViyWJRFVK+u54tfsfv1bgOQL/3Ay2HcnFQrV5FlKS2PO4R23e3dL0IkeVY0sHN019Wl\nFzgRBqyJwILJR03Sll/kC6ES3uASyOE2i1n3Yex9ZPaoup0ORAvKt+rLutWptoixjDoptBGA\nQQj3Cq9ZRC2WnSjcpoGJrt5t2SnWWArFeuN7HDycdK7wzmqOWyHWYDBciYs7HdpqORPTQzyr\nt/AFC7MAVu5OrslEjkX2Li+VxZ62+FHOxKJUgJL+OttkNYnsH88FWdMKK9x5ecKcX7A9lM8L\nSoXs7rCfCQMJ9RPmylI75+F9fQKS/cJSJ52fHnL+fBg5VQFAtAjawL/my/P3IfEM3A5VrWhf\nTPlfMFzVvteR45PqT7MBLet5s/uLsIM8VsVmEZJeiSLkqo08txR0vlWOwdOUOgNzt8snygUq\nPIc3Fj4PfUkG/oGuIPnxUQ2OcG+zW/h2Qz8Mf3cegcWoUDtP+8opfxNB5HYVWQ2SQVdupSt0\nJ8FDXq8sDxJOeSd/5/1W+3MQIt6FbVfoBKs1AnavFm4jxDOWjWfbQvWVjZCtJdUREyE8Mx2R\nZwTnt1stby1bmc7Gm+NQazDY7wpdx/wyxPMdWStiyvYnto6sxquh5KFq3IoV3DmylSV1adZ1\nte65x+xBiB2Z3KJi9pSKgun76p1ceju9feB1At21mADgV3Q1HpPQPdA06ooX3U4WD7fMqyuo\nP3KMdOuadKkqRf/yBPCGQL1YBpLqbI2vHptW4QwktHlcpcbnFMLXj962+G7DU+rh8lnk2Z1B\nYFcwkH4DsEPYTsEmb435Krb8e1U/jWMxkD6CLYFtMdw9EIKVgcCrwK9E2LrcV70YmakgYwTn\nQ9+SiHf5LBbrCurtpNO2laB9VBt7mYji6ZEi9QTf81F6/9qkL8/YuOzwCPK2Eq+OVQQOwyKK\niaj0JyWdjuQSeHsvxq1wExHIxmd4EDfPjU5HnuwNZWa5kcVwR/KlX0VtbKSz84oQEzW0j53s\ntBlHGck32ap1Y8UiIm9PYvTG3cu1mF/FJM/5QXQUKcyrK7hfOoFnTGTeEK7izYnlXv0IyOcw\nUDCLUzR6enJe2QdRGwtbCdyel0XY0KuiMI5CpxdEJ4apncDO68Vr1z2ohL8hoBhAX8f2JWx4\ns47aC1u93Z1I4LaAWyOvHtyA+UKoZ5AkPD729rt6F8DOlD82nbkfoykmCXRVEzAqPZJ88u4F\n8Y3+Haao9gL/RvcwZmomk70S4/wu+WYjuSqUy5i/lC3Giay8hldWi0M5yG7GxzYLZA/g9fny\nkeLwDm37jyVjJSfR7++kZ+SQH0uZ0rqVVHqRTxj1J8eQrEIs2jZee1+cLybCsshZV4f0M4mp\nCZk3zDp8uPum2YNF2KmWzSIkvQJFyOO+5d8cFzjTRj0c9Dtc+TJhmv0FfULo+TTq8/Zd5ZMn\n+bwaZT90gTZKxgr0TOP43dhOxnY4Nhlk12Gjq5EAvt+Cq3OhO6cmnctuqTHpZR4d3yIxZgsm\nYFL36EIS8CYQlxT78rzO5VB33I+xhhS7bIM7iwZaXZKcuejvmKDdhuPQRsCyzVwAxZBfWX39\n8+j00P3lgo+obWMwIK+RSWy5cPnnPJY3jU5vvS/fX/ZtYyAL0kK6qawtdx4Udd4E6w/VyC0q\nMIQnMtKMj89cHCJKXYKmjfpE9YJxg54yA8XijyQHz/eMz9BlVkxeoR9qwgzSvqrwGZREcuZq\nTIKrMqYXpuF+JLrQfyUe17sNuP2A+QXY/RlpSR9SvcNYDcP8gmoEJJL6aizChKsfMjcw1aVX\njY6ME57ArmIg+WR+iZ1/wXYNNpmgy613Re91hj9dAAL4uOWvMVn9BTqnYFeR3E7hysTUlhsD\niG/oINN29n+RgVytg0St8ZcLxHD50NlsVr2/mO7DU0N/xMByZTh5xSQtHz/cHmLsjP6gaJQz\n9jsxCVyc+0WWTxYraKKtnMm9q0Ig5zQ+53ke+pwQY5fWOZMtKjuXSr8OQmEnBTOS3HD6F9PT\nQ1j5Le0wV3tz6bN1OuMuxnx3PD208KprnZIsJTaV2nwrLJibg3L15SC8THJvx8d4L/X9Cn5z\nuHj8jYDFVRA1yKHBI27mfQtDbksizQ+glmAOXatzbqG9dqUvnrllr9G2gi9mVEHWsu3seW7f\nUf2tyVKusMqnTHLic1XogCgDKWPbHwyaV7BBPTYTieT4/1WXHmMtBYEQg8xSqLMkacg97mdh\nOxvbqdjOxUZXA4GMzm1A9EfR6MsaSXIendCObCot7Fe8m5zcugNf50ZdcwaJqgZWYYbJ8wx+\nq14xlbjidiZwJO+s+FfSQ86Lg64bx6YH7i2ls51K9uPcw17YUsGWvb+TWRmcldrk53csNYgV\nUfNhUAhzFckVVesqqkdsKblKPo02/+0utlQuMudr91q/CfEqtilXtv0/o8ktvyomeVxtS2Cu\nsknOVcqzd344kbzjZcVk5fuNpLbchgnwOyrJDJJuvtyS+zCOMOG6M5GcfnvJMEt8YiT5zxNh\n508GYSCqefV91OTSL5fDUuriKtLbsHpwT1C5peTk+4ssqU+4WevcRHLwjvxz/n4itfmLYHy5\nE9L3DPnr5NHY78HE+FXI4L1hjKRa0g2pZs3BhaWMe7bJvQFX5NDGys8N8hOUuEHy6oRT5t9H\nJ7feLH2H9CEO33xhAfaRlvSzWej68mpur/OTSKQG8QiHuQI6VJoHSXo5lcudUXil0pfF3+VB\nYFc0kHzycgn/KGw/xHY9NmcCh1+6kAQmJrY8OaPSx2Ai7zwbgg5iHks5xiYd5q8zE8nnyKQk\nZBING3xkcvAK9IYvxoD+pAwShR2/cBE/l89cNuHhhEW8bdPJ6f1x5rdOMAlZ4AL4Z3FbkjNR\nkbD50QuP88/l73vh5sXNP19qH/GySFHeMnSDsbVMfCZElrj5cVw/hJvCFYJTE8mBbfPPzz+S\ngSybTKP96hvdmIXy5ofPP/LS9qLNn2SHlZUv198vIWNefh0dZMVf42FwszC/WEH/KCZj/44J\n1BRyNq89+em4v25q2J+ElfU6rw3KVUsZhBc4Xzcn/QVnXSPBPadHpNwKJ3CV4ueLLJXGbBjn\narKZQt1808jE5pK3rM2Gz9tJTAx8Fxd+zgKj8UIdnWDybBGe6cKFuTePTAx+Ki/qgl0YM1vs\nnHkV6hLqquvyA+X54cpGel+lbipTHnMxMaH+EnQ7B/EduXNn3L08uc5VZjkuDFPpGDGcfkIm\n7rjN54Tl9TzDjVOJibGnIg/OQkap/LkcYJxodYvKZZ89MrXtgUr5Hk5uPgRhSvaJOOeIrSTH\nOe+0QzWutf3q4dTABWXimJFk+tU4/2VX5+LlVTSfTl1Xk3gy7Q2YSH/emRgn7WOh5s+8/Jes\nU35aGAumvf15E3D/fKHexfyL+eXHk/P5x/n7xc4V+jnHyCt0HcaV8JeMpoYumLKzz0Y/dxMk\nSz0veRsczstYKLc4PoZXLnwCbWeyRNuW29Yn0P43jCQ3f8vX0elD0Jc47b7Is4ULdXXTQ/xH\ncNv284Mu0PjpFfk16B/60OegfmBckTLPc27+YDxp9RAesjtuV7iLJi/7DbmLeky3DAjIVaxv\nY4tjSy0DfapWoTe24WTbsjbhjS4noKftRgUbweD9WywRXziWHPhl1YIbPmJfW3e8RSawr8YA\ncBjYNGP/QbC5Qtn2Q8qyXoxB5GhkcxXe8Ie3UJlrs3bugrHJrX/2s94V33ASPv/zIXxQ9Bh0\ntm3wl8FsAgPCDeiNmyPaOh7yxB/OeUh8HFewBkYnH8YtW9dnu+Ob/geTkHMQa28EkLftYBJt\npqFHM+I1S6z5TmTIgGbuxSM/o3gQ9kB49OAYCyuOfCc+9jM4hDy8atW9UhTBICDyR1D+MIzM\nACYFP3dlr2ntju31n3hR2xvBYR/EkTdp5hB/B/T6PiZ5uMUBD8+HcJ2oc8j7hyBLJhxB3sw5\nDn7nYwy7DR8sPgvc/wX6tkP3xyADepgOyStUiCO/yMdsfoUHvOVr6f4tXlhzxuKK3J4BIhj8\nzP22re6B379CLiaHctpxWCBwPiMgkwdMcPRdGOAvGU5a3yuXX/lwaquOSv/wSsg+BHq3IK63\nsOVMNh7CwH/+SGria/5qZE9s44uNZeEDzuZfodPuCO/oAM1T2LkdZX2dbexVER3ZBD+vPEVH\n5y1Mf88p+xNjycGLOlr6D21qdurLWicvjsGhb8Mrrm+H7JPA7NmI5Oki8V0HmTLJSSFOM3Dh\nEwuiL2LJPfow9lDfhNd9CPPjtEmfn0xuq/qta92qr1PHmt+AtM6E3KdBA3zns1rZT2/ujj/r\ni2AEY0n1it7YF11vt3PZj41ObrnMy2Kony71ii4dj38Csl6ZJxcvqlF/x8Tsk4mpf1zW0374\na0Hy7cjDQeCX1xb9+uO0RbQ3Z3yQV3bhTz+Bsr8O084LElODvw+l1BIH7or1nw2YH4fWe+a1\nCckGnsMw12J8OH90cvPlYdXqbnvNCTrSfD7iHYxN+hxxwukJyJ4EqH2Rnt8nyKQVbVRPImG8\n1RCLD0r9E36XqpT93YQaHHdiB/jX0bH+MHyz6xMIKnehNOVHQbnMoI0N41fqvXQQ9+H4sqyy\nvyOLiflhZb+7Y/2J6D5fi1b6AuiyN3QWff28OP0v9PwqjIGvdrb3P9uy9OuQt1OQB7RtM+G0\nR40XAmn9NORpf8TFWonZjjj3YyzpgRpHICz6N9zlodQvLWMm0XutQVkcAT+0T8eJ8bUdOkBv\nBWYaeki+3L4PbRVXKNUwQk7ifCfOa8DcgQwm4L8a/k+FP/Kt70S/eslIcub7hcZ6d3v/qSCy\nEVGfh/DdSBtNAP+d8tFJ/N6BPm5bYiJxoTx7Csa7NavoucjLy918ITfyUgOjfoQ7CL5T6mpP\nPN63ukW3IJ724okhhNdoa4M3I+I18Uo9BWlNYf9vuMh1cWJiZjN0RZ+8eK5U34lrahcPp+4c\nCrrIsngaLZkk6bvEMDwe24p/jGLJqO7iCZ2L/KOjULFdnAOzTwIkQAIkQAIkQAIk0HgExECS\nuexxjaf6Qo2xAEBHAiRAAiRAAiRAAiRAAiRAAiQgBGggsR6QAAmQAAmQAAmQAAmQAAmQgEeA\nBhKrAgmQAAmQAAmQAAmQAAmQAAl4BGggsSqQAAmQAAmQAAmQAAmQAAmQgEeABhKrAgmQAAmQ\nAAmQAAmQAAmQAAl4BGggsSqQAAmQAAmQAAmQAAmQAAmQgEeABhKrAgmQAAmQAAmQAAmQAAmQ\nAAl4BGggsSqQAAmQAAmQAAmQAAmQAAmQgEeABhKrAgmQAAmQAAmQAAmQAAmQAAl4BGggsSqQ\nAAmQAAmQAAmQAAmQAAmQgEeABhKrAgmQAAmQAAmQAAmQAAmQAAl4BGggsSqQAAmQAAmQAAmQ\nAAmQAAmQgEeABhKrAgmQAAmQAAmQAAmQAAmQAAl4BGggsSqQAAmQAAmQAAmQAAmQAAmQgEeA\nBhKrAgmQAAmQAAmQAAmQAAmQAAl4BGggsSqQAAmQAAmQAAmQAAmQAAmQgEeABhKrAgmQAAmQ\nAAmQAAmQAAmQAAl4BGggsSqQAAmQAAmQAAmQAAmQAAmQgEeABhKrAgmQAAmQAAmQAAmQAAmQ\nAAl4BGggsSqQAAmQAAmQAAmQAAmQAAmQgEeABhKrAgmQAAmQAAmQAAmQAAmQAAl4BGggsSqQ\nAAmQAAmQAAmQAAmQAAmQgEeABhKrAgmQAAmQAAmQAAmQAAmQAAl4BGggsSqQAAmQAAmQAAmQ\nAAmQAAmQgEeABhKrAgmQAAmQAAmQAAmQAAmQAAl4BGggsSqQAAmQAAmQAAmQAAmQAAmQgEeA\nBhKrAgmQAAmQAAmQAAmQAAmQAAl4BGggsSqQAAmQAAmQAAmQAAmQAAmQgEeABhKrAgmQAAmQ\nAAmQAAmQAAmQAAl4BGggsSqQAAmQAAmQAAmQAAmQAAmQgEeABhKrAgmQAAmQAAmQAAmQAAmQ\nAAl4BGggsSqQAAmQAAmQAAmQAAmQAAmQgEeABhKrAgmQAAmQAAmQAAmQAAmQAAl4BGggsSqQ\nAAmQAAmQAAmQAAmQAAmQgEeABhKrAgmQAAmQAAmQAAmQAAmQAAl4BGggsSqQAAmQAAmQAAmQ\nAAmQAAmQgEeABhKrAgmQAAmQAAmQAAmQAAmQAAl4BGggsSqQAAmQAAmQAAmQAAmQAAmQgEeA\nBhKrAgmQAAmQAAmQAAmQAAmQAAl4BGggsSqQAAmQAAmQAAmQAAmQAAmQgEeABhKrAgmQAAmQ\nAAmQAAmQAAmQAAl4BGggsSqQAAmQAAmQAAmQAAmQAAmQgEeABhKrAgmQAAmQAAmQAAmQAAmQ\nAAl4BGggsSqQAAmQAAmQAAmQAAmQAAmQgEeABhKrAgmQAAmQAAmQAAmQAAmQAAl4BGggsSqQ\nAAmQAAmQAAmQAAmQAAmQgEeABhKrAgmQAAmQAAmQAAmQAAmQAAl4BKIksesQ6FKv6JLcjqrL\nRhc312uisdhTe1Op7IhS22Z82ZKeUe16TA3B33V10kHH4327JZOtk0oNpPy0lv739PZ4vDWW\nTG4bRtp2+fT7muPx6MHJZOoBpS6fmB/2zN6O5tbVEzPpsY6Wpo6J9EV3d6gzeyZUDmwLw/ox\n58qgTeV2102texiVa7Iz9khabbtLqfW98WZrd0tn90tlk1ZMdzxrRusHo8bcn8y23xSLzRyo\nM5mcNWNPm5Y2y6SnRppVpDWtJmd0vNMkk9OSp7aOjmjrxMQW2TdKHde2qmW/F46nM/+MN7da\nucjUeC4XWRWZyY1PqUsf8jUr+NVuXqJp1JVJlFtvMpmejsc729TM5OrkTPOTSm15rCCOd7i2\nJR7frdPVZVuuMMwqdU6P3TpxVFZZ905Pb72/U23oyii7LdKhZ+Z07muOxaLdqdQjyMP12UIZ\n84/XtMbj+6xKJp8ci8W6ulKpuxJK3ZRZpfp6IkrlRtRDM/H4/gcmk/dtV+rGqflxix8h773l\ny7FYvL64z72t7ZV7GdMamZ7OgO9CBsVie3461rThqGwmN5lWqE8tZx08kbbG8ln3qI2rMmqy\naUJFR1GPUS4PjoPR9JzMo5tisUN6fA5K9UXa2mb2VCpupqYGd6A+tLS37/d0ncllU5lp1Lmf\noD36zo2rVFanUioJ3bGVdLPtuaMj2zYxEQVbv133RVzdnoTuV6EOzblu1ddpqyZkaq6/mTtb\naW+u/eT3YZViFT/f1xaLpVfZ6eanKa2zU5ltf1JqDfTep0fqUpdqaZN4omtUNWcT6mHUI6ln\n0sakTDfF3Hz77axQt7Utq5riR41n1MMIv8Pt+6bR7+XzLq4ZfHVHx/reiYksytVvf055BKq/\nrtTZfg5tVfqBQtfX3NHScoCVth+fXxZ9q+PNzatVs/VkMjmajMe74sKjsBznSyufFtp4t6XQ\nyaltkIO8OfUah2rbE/Pl5B+h723OHqJ1NDORfuKfbj/Q1xaPK+gTpO/Ol6Ustw8LzN+P7MUb\nQx+4B8aMwrbmByv3u6G7oy1z2MRU+nZ3XDgO9e6AQ7PZdKrJWE3JGad+CBdxSG8TxshpjDXb\nvLL265Xbr7nB5tWPvDa6sN3NZ+/3lX4d9qRV/tFtbRvRp+Wi6LMxFs6Nm9IfZdVMdFxtQ79b\nzjn9496o0/cr9UTGbWfTmOPMzUVKx35jUzyewjj85KOxWE9TKpWc6Ip2HKuyucSouujW0vHk\nzBkdHSrSPKF+JONhQDcbR/JUpO0EFFNFsDrNvarQpHGi6MZRdUVrei5y921scWyLOsHvbN9w\ndMSy3qO1ehnGD5EPZ5LGqCtztv2Zscmhm1y/sP+PbuqOH3auVhq663+BfMvAKa0eQLMfw/GB\ns+kZM4WeYBiVrRcTBmdy4Oqgf2rbmU+PTm69OWzqEr6rY8PLLWP9B9L5V6TX5Mgw6nFbmYt1\nLvuZxNTWB6uRGyZOLNb3lBar5b+00RuQ96dIXGDIgsvvkOevJZID2+bkva61N575LsaqVxhl\n2jScG15lEOkviN+OvBwBX8y/55xwnQ2rzAiGkEuzWfvTMEzu7423vBHpvAHxjkQ8C3IN0p7X\nrvPjz0kNt5cvQ/Yltqf+vLR8qV6YB3PKvGssOfjDnlj/KcpS7wCnFyKfLRIuX6Yfz/WXQdK+\nCxTfaKaTf7XiHe9AnLOR0P7+ea3NTahs30rbY39qVh2XQ5d9fUZumDlms3GUSUPxVgmHHIgB\ne7tW5vzhZBptzx1MHeMn3vpOpLUJFPeVuHCSX8SRfCMH4Oz4ev7OeaNmUO9+NpJ89GylrvUn\nJU6wrnj/mojR70IeTsbWKp4QhHI0l2Wy6tMT6c3/cALm/ets3XBgJGq9B5BfDV16nThI38+j\nq4t6VOXUpxNTm7+C85KfBa6rfeOXI5Y+F+m15Med25d4ZhzpRJBOhwgQ2Xnn0YZs6GftjTOH\nir+btoZxaaJz4Zw4Eh1iXIdwYsTCUHLk7uWHlbPQJ4WEtuSy9ifHpoe2i19XR/8rLKPRng3a\ns563eId6ndRGpVDmq33+kHEfSuRqlGEvwr8UIhz9IXwS4a9SOfO5xNTg70V2cVe8D4Osfypj\nXzCcnPkS6kXeJLG4FPHF5HP3Zm3+S9n6rdqSdjznXF5Oe5llM3d2bs/nivw5fRmOsyiXKXCK\nC7ticsRPzjlSjHkM+b5I52Y+Mzy17eE5yUp1t29cqy3r7WB7EoI3y7mCuI9A0FDazn42lVq4\nQNHb1reXiaCfU2oddNrDjY9+S6nfaG1/dXhi5pqeeNMXtbbWIafeOCNpoIZqM62MRn83224k\n+qyTckTA76mk+VJCDY63t6/bs9VqQlpm/VxaTp/6G6xLfNXk9A4VsUSXl6K2Oazd9uygcFh4\nx39TueybMQ7cIEZnT9z+olHW2ZY2yL/LzGU616ZxjHqtfw+dvjaSHLgISmJ3oeuJ978K/ezb\nwPtE8HTrqlGPGm22TOfUZycnNz+yMJbSPfFNr4bItyGNE6BBQT+vHoa8H2STqS+UmnTHmzce\n0dysL4Psg5CuW+448MpSkpz1kwOPgyzAxXw9EXYMus8grd1EhstAjCk9icj7QYLbP8uYbczt\nAICFVXd8cWQqg7arm5G6V09R672y9cr7T9rW3xpODVyI8EX7pe7Y2RtQvh9H3dhPdHDkuoo8\niXa+HTXlMOjYKf7IxBSEXAO9PjcysRl1QKmetnX7qEj0O9hdg+hOfRZ/j4PPAO1YoR2PoR3n\nLyy+saknNvVNbZnXQF/h4od3RODfrD7CKWfnPjY6OfQxOQkD/JCmaPN50O9MBOoWP6SB+q2u\nzencF0aTQ9c5fnn/VrX0HxRtUudBqtQZP04aA/UvtJ374nBq6Nq84Iu6W7/5X0k1pSxk4ep4\nbDeWDNUgJ/IrRoOovCLVPBe5WmwDyerp2PQZ9BjvRHvP+p2ZTw8dAwY3E8U48YXExMB74F+0\nI/PD5/9Kg29qVldhaMakVM12Tn6Ygk7K8S7u5wywEXSIn0Nn+j4EDKSDrCypuHUxwp+MTbo3\nf8LqpIXOSibC6PntNw6nBn/gei7+fwx2fWhAMgig33MHFT8Vt6938vO7bDJ9ph2PHtmioj/D\noISBZV6H7ETxwktmKrZJlN0MImFwNVgl0x3FysDXY2f++nmCDsPQs0eGL2Rv3qSglH5zcXUG\nQMTwdgbt/PDOYKyMU/ZBuOXH9feRzgxkP5SZUS9ripr9lGVtg5piRC2o136cUr+ezhhP7bNG\np4YuVWptS3fHbudjktGPOJhEzM+7k7aCnzHvTaQ2f86X2x3f+FZUKAzqTpySeswy0vr+6Vzm\nhMnJrTt8GUq98qk9He3/ADlnslqOj8ip5fxcmgv3ysn29M/ZRp1nafUS1JEXoaitcroUpuDJ\nWNBu4I+JroqgH/jGSPIhGAbzrxZW6sPcPsTgYp85vbyRBeu1Y+OZmDAOIi3H+C7UcUmPnb4P\n03RjzhlJDW4Ww6A7rjajDZ0heizoK/OVQ1zwR3GoTYnk5kv8U92x/o2I9z3UyQXtEG1Q+mxE\nwR+s6GJlJ2VUzN+XL7/OeKTVBHa+gnTe65wraPNeWhJa+sgcZLqGiRN44T9JV3zx/0rUrxfh\nYHaRYGHoOR8vnhj3f8jo3Ctw9flJ/6xcNYnGrUsh60T4RRbky2EoSdqvSyQHxcBynCy8ROMt\nP8LBCdiKcpKAiJgB62mUwmvQJ1wtfr7radv4RaSIuizliFABneQnSPhi4Yr5VUpW4kBDLBKq\n26fszGnz+6W+eE9Hyy9RXY4ROYV6uXGL+jvtGUX/fWXbf4WB/HmpB4XxF+jmzgWSaMdnYCHp\nhs72TcdELfNrKBiorc7qo7DwamwsAEQ+jnSl7s3rlxFO6guqmRoaTg6f418VxcLg2zG+SN8u\n/X+ROE45bkskp/9t7sreglxU41G3+V8FZSSPNJAqQOLpcAQW3UDCCte30M28Ds1vXqMsVAtd\nGSbb5gIMiG8qPFfsGJ303ipq3YoOTibmzgpSsXBh/JxBQZnvDCc3v7VyvLUtPR27/RZD9ZHF\nJs358SEXi/rmDRhovp/vvxj74Psa8N0CBvONs0Lh6KAxg3gQHeeBgTr0wvhljqXzrjhAlIm/\nVKdq0bOWuEHz59Q/jatLWOVGGZWcvASRJ/pKuFwm89JItOk/UUdPKRwYC+UgCiYT5sPDycGP\newPq5xEnkCEpsrw0h2GIH+rejrIp1htXw6WM8cL0d/axp3/FCW81ekI27iRVFw9PbN7kx3f6\nsIh1C45XlevDEFcmPTlcaT++1JV276oXjIkAkzVfgSX4lb5Pm9w5Rluvh8Hx3Ep9Zb5KTlyV\n6xtODl3aHdvYj6tCP6jUz0kZ1toXSbr14Ci6Sf7C6odoM+i378UVZkzm5UpiX1tPvOUPECVX\nUiuNq2JobsRVqK1Knd7eE+/EbZbOVZ+y8URPV18tY9dajF3XiF9nW/9nIxH1rrB5kLg7ywk/\nUH8sm5x+ptsvHd3UEz/iNuRQ+AFteAeZjqEUJj5K32nH9kxuvdXsLKyG7uPdMglQh8Qgw5Uh\nLDqfjoUFlJf6BHStZMjLguevMAeTq+CBFokrkavX/K9SujhPAykAJAYJR2BRDST31rPIJWic\ngSZZ0oHYOveq0YmhH1dSG1dNfo0wx0J2xY6+kqz886KDse1XjEwOXpHvX7jfHe//uKWc25UW\nXFEoDCvHkJuxs5lDRqe33lfsfDV+cltdq269F5OO1iDxA3euQYQxTF0ILGYZubLkFjQZUIMt\nIqCe2piJb4hErCHEKW90FyEgaULGFSOpzWfgyvGfUPGPDjOJKCJyxXgBTBbba3FFZUgyhckD\n+jAdqA9DPEyu9I5E8o6nyfNn+VDw7MnqFtV6HwzR2dtl88/v7H3JN3SH4RKsDs7TF7cp5kzu\nBEtbf0A9WtS+fl46y/3AuQJhfiALiKg3/wdj882BjU3ExRWUA1us6PswZp0bOB6YoOzkat24\nmjD72jF9AC5N3NyQ7dnhpy7HreavgcHwKdRF3O6P/0vs3HbsJBraOAqrqsw5sGGRS/IarC+X\nOFh0Pi+RGvhi2PQKw9dz/leYVpHjFWUghR6IiwCh1zIjYJnIJ6FSmE4It+Nan6iUje6O/ucj\njNw7XY8BEwuVluhd0slDhsjUu8MMNDLUWNHo/5QUWsUJeeYI0QLzlQFBXBVJMcoSEXBLaHHK\nyC1reT4nzMTU2JGIc1udY1iFzbarvzqtra3vRBpHC+hFtKWd/s3tw5znPwL1YeAqi0x79HQc\ntqlQaotpfSeMo9nnsArPL4Nj3AIWpg7O0xjV0XJvq5vnvYsdOLf56XNisf6jkPN/Dzf24J4+\nK/JhdPzBjSoPr9OejW7FDdRvw8O938VxY4J3+JlXd7b3YcFm510Bk3aMre7GkRSStDlseLTB\nuXIVqNwkDp4g/pBSR9d8V0695n+BMrLCAtFAWmEFKg93o7Edji1w2UpYdB5HSNxyOHBbGx4y\ndJ4bKhesqnOuDuoZXa0b9islQMc7cAk63ECBfDWjx3o1ZIaLWEoJEeS+kCHQFawyYniKBGYJ\noJ7KbRi7ox0EmrjPRizYaYu0lF1kKAi+SxyCLbDq/XC72JFV9mFR3EF3ViEsY5n1kFxTeRXK\nXMxjJ9vVCsTEFpcwjgprEFSb3HKOJ2Nes6XejTokt2oFd2CIOGeFjuenIGVgVD+ei3wWvBZt\n/PLFL9Uv8p+OWi3vQHqB7mipl15yUW7pnBEjKZyxY3S8N3boC2rRsZ7zv1r0atS4gSfRjZrB\nXU1vy9JHoCMIvQotcSRuBV7PqueAKTpgjaekDnhO4wiMEqHv0UWcLrxlanWFvAU8fXo7GDhv\nqwsYgcF2QQLVTE6riZOPVuLjisZhtcrJl7li9nGrDyYs0reE7sMQTx6+PnI+C6z0mtm3HM4/\ntUKOJN8rJCs1ZUOuEuLtik/Hb2gjBW1xFablNXDUeFtdLfFryvqiRAY3MbYL2s+iiA4lZCn7\nxWrSwvwGLwyKlJz/BMlsned/QVRYUWFqaLgrisPKyYxlxatZsZI4eD1trBwIjA7OG7HKhanl\nnKuDVToNjQ+ueG8tC5tOJFs+b0HlyXeOgoZlOBJYagJoQ7yyWRS6sbGwEau2D8PUuD1fbLc6\nsL2aSVC+DO43DAFc+TBS/tVeAak2HpLEm2Yb3LntxH1VfYNnpf7qa1N6/hMk9TrO/4Ikv9LC\n0EBaYSWKdx3swIpVuEu7YCBx8NqcR8rhwAzjAVzlQdD6OBg/zUbbO0pKt9UOTHDC3eYAYaLz\n2PT0oyXlhjghHxKEuNBX6EIkwaAkUBUBqedY5B6uKvIKjyT9G1638Ah+73c4hcwvLs3N6z+c\nD5PiqlRIMQ0VvBpODZXBgMpi0QHfDFKPYeyZ95KOINHRIm3Ek7eUVefkRQ0N7lCPZLzcwfpU\nqSCxRG3jG181uHrO/2pQq2Gj0kBq2KIrrvhocscfq+mQJY7ELS511vdaGSxmjxZ5B7KnRyYS\nfy4lFq+5uw4DVaA3x+XLgFy80tf/enj+mar2MeDhI7BwVcVmpF2FQOj64U0kauCDabxSeOU0\nXTECelLh4836F2H7MJSLTJDnfZNG5MMa/ZVMgIul1eh+Tr4wOWc/5ywe4hk09WPUnVDPm7ns\nzN9Qd0LF8+uO0x8YdQ1+8YrxRnZy56++bGdfcV3KulxVWnjmLJfLXF9LSdd5/leLag0ZlwZS\nQxZbOaWvn0ZvdCE69OCrm86rOBFHXT9dTnJWZ+XDd6Gv4JSTOXvO0ddc4H9gbdY/bwffIvkL\nDm9H5xNYBwz0eOWm+UqemJp3MeB9DUICT4yq6ixr1pICdiYBlDmuXIZYcZb6r/XPEaeGBQiT\nTKSmPyAyWOfmSh8s8D0bfXFCDY5nk8mtOBO4/3Cl6Cgmx9+Zk+ju2bbTD4hRuiyd1AHUhZB5\n9bOCmPJRztCs/Pgr49chqNTDidTf8QFb809QCdzvCzsE/wTe6nNfyHgePG3llP6Gbdv/5+nR\noFDNGPqlr0P5exo7H8Hwo6zlSuPdyGvgvtyJY9R1tX+OpH7zv2C5X1mhaCCtrPJ0cpM2uQ/i\nnvkkGmjFwVHCSFiJUwmF+0Vx+72Is6i3mDk6KDOBGeKHK+ggw/2bK4SZPQ25eOhR3YqP7f1g\n1nMRdvBNhx9CzO+CG6HyYXt0gXTLloBMYFBEi1Kv3cI2f8BVWfn+TsVyl8HRaLMjMTG9AYC2\ny3FYUF465zpXSm31H2Hj78zwQRhVq5+UK/qAaZPLvFdkTKgf4RbE4H0YdMPVI/N1fPDz9kId\nRic3Xw6/XyLMotSbQvm1HLt6K9E5zITeSVLiYgcfrhx4F9j92TuuRZ3AcZFWxfYSWJgXsDaZ\n6LttG2POTZmsfAMpoHOZ6d+PJIcuQgkEjjcr3l0w/PFYcuCXo5M7Pg7/hrya57Q/Zd7m9EvZ\n3EZ5B+xsHqvYkbIUFzYqokid/ls1cSUtiSeuUroSRvp9zKf68IvbeYP15QiL9Rb1n5XkBzlf\nr/lfkLRXWhgaSCutRJGfVGrLYzqbexkuaafKNVA5J2EkrMQJgmI4OfgV9BLfRD9Q0fgKIs/R\nDwZazs6uTSYHHq8UJzG1+QZ0sa9HvBy20oM/Bhi8/eeBtD19OmSWDlcpweLnTTaZPhMc7iln\nJIl+zoYBApz/Ip1ncXHhfSEJ+V88eeE1CBYmiTr8AABAAElEQVRDdPRc6PriRyyXkoQpdz7I\nOYjABNd8D1dw/oj9wKt+xWQ7+mh130hy8Hjbzr1abudy5RcL7Qy8uLqhhrMz9kswiRizs7mX\nIuSj5epVviRJz3W5T+FjlhfLucTkwLdBZcA/kx9+ue1DR9QLnYC+TltZTP0gE/2bmkIFOS0x\ntfVBX3bQPkzio05cO5J8SF5RXNTZyYnXQH+ZeIWu30UFLoan9H1K3wflT4a4jdBNDPVg+jkT\nc/WPXNKWTyPYMyZ9hsgqVx8h23G1qu7yVqnFTEsUk0m5+xtcQycC6iTa5jvw8fKrJKYYKzAY\n3wKJ5euqw1D/M5NMvgLRDBboroGR/TY3nuhT3iHtGSyY3JxI6k1uyOunc1n72V5fUjF+eelL\nc9bnh+x/OJEclDtP1PDU0B8xEr/RPVeZQ6GmiJcFA7nLJZSxiJTQp+vrEsm/PxvwfiXpQ0Zg\njl54UUcWnUuODzgn+s1Iv4/51G3ZrI2+3DxRKY7ol7PNa4otwkiiYV09539hdWn08DSQGr0E\nS+gvnVE2k5PvJ/zKCWLMtDRg2bAc4t9K9ysJ43RcJeQU8x5Jbv4PfAvoDehh3BcWYEBAI8c7\nHrxfRMKx3NrmDMzYdwZn+V2og7kul9HPGpvcWvLZo0IdhlObL8QAchL87/LSlbyJwSRfoxZd\ncGuDutBMmKNTqW2PFsZfjONxtS2RSI4+F5YXJqPCVNLFwOZwENYYXLW6V5vcS8DrG8MTA8dg\nkPyW+CNcYAddC8MKV+ncf2jn7P/nl4Hn5wTOjyN59c7Jj+MK/eRYnJyUH+fA++fGcPwXKOKf\n8+PlH/t+GDCetI06B+L+6p0Ho4BO6+3Q5svYpHwlnsdXjlGnjHoCch2jOl9inv6z3uLnHniT\nG7e8sshsApPgN8O4ODcxccca3Er1WTcdp+7OxpedORlz3oV+ON6WmNh8oCQ3Mjl0JSrlsZhU\n3ezEN5isz9VTyRNk6h9Pm+wzx9NDd4us0emh+7PJ6WdiTrcNZ6WulOUF2SmsbG8YSW35b4nv\nu5HU5tciw/JB46L1Df6SvOPy9+f7OXGdq2Aeb6ed+2Fq/4V8rYeQ30NslX0hbmGS21Lgiuvs\nnpNycc779cGd+Lt1pKB/MzfOzJijRyY2/8bn4v+6fZg5BwXwJOR67Xe2D5N+ZBJ9zAcSEwNY\nYLm+5BWiUXXZaCI5fRzK8SvCyNOx6I+kLSf83/z9fD8vcl65SX5dJp4IL4j74/tBZ6/vMxcM\nJ8eOkQUnXAXahveTnogwd3iRitUnaUvSf6E9mG8mkuljx9TQiOiEl9I8MZycPhr+F0j+vDSk\nD5J9t59T+m50/pc45/PqlZfevPz6fvN/Ra6Z0sr+SGLC7AUR3yuVFtrq/VDrNtENcaQNefUT\nMRyvAslyW1dy+gAsqn0GZ5yFsvkh8uM55e/kyUnHmFOHkwNfFrm+Q334Np6FfTFeqL8dMWXM\nc8Jj3xt7TBaJfCeRVM9xr1a6MWUMgL4vRXu9V+IV6uAdS/2R8vl8YiL9AqUGUn66Y9ND22d0\ndm8c31UiruON8wtOu35SN510Z3khoNeW3Fty3YjOvoRFGTtjOLzn5TOP4Vw+RE+J7/GQNvmI\n1var0a9+VM75Dos337Wz2RfiWOYORZ2ExQnhILo6dcOJr/WfkPhzYabsi9s/f1408pyn5GEG\ngqYwDsNIG3iZXAVEOZwEvy9InuaCunteuvO8nXRxq2Qup/pwZeZg6a8lgJfPvHYAP/TzOZN7\nnvT7Ek/KLKNz8oHhSxfGceourjbpv8I4Os67Gu0lV/tPPed/tWvXOBKwQEK3DAjg1hj1bWxx\nbLOd4mLp1RNf/3RlImvRURwgMtGU78Vbva9KJLf8rbY01rR2t+9zitL2cbhCshodxAguMP8F\n14rviWj7BW562sIE+V6keTeOD8YHRfZ3dTDbER46DN5Rgw5Wd8f647Wx0OFqDKyyWmzutHIz\nPxme2vZwDXJDRY3F+p7SYrWchkhHoONGGZod6MivH02mMTHb5k7gZiVuXNUV1+/EysQp0LkH\nHe043tz3p+nkzGesWHNns6XfjfXOY3HuKRikLRSWPCA+iugPwe82vObm7mzWumJseuBeV+Sa\n1q72vWXAfh6On4kO9+nguhr7zoPBaOAZMJHnW+Rjl23QrUibR4q4jwRlCHUQQCZCWmFS6LyQ\nYxJe4xgiE8bSw4j8OMI+ifNrnLSUvP4Yekqtcp5X0IhnRnF4a1bZXx5Pbbna1VOp3rYNz1UR\nfQpGkn3h14vEYtCmDentC3ldjgxtjStj36xy2c8kpi76vcTtVBu6rZg+Fd/IOgpxuhD/MdyQ\n8LuRyZlfgO9MrPnlRzY3xb+E88+G4Y5vbkBbzO0gB3rqDPRLIXs3Q8lHkM4qTMp7EO5JjKA3\njk6mr4GMKUnHdx3qzN7mWOxU6PZspHcE4sSwjWFIfRxpRGxUaHxZGd8b0z0IkwO1JxDuN4lU\n+rOQJUbbAtfZvu6YaCT6YtDdB8ploMs92WwO5Ti0fUFgz0M+mqyjkdMwcTwEdA9G+ewHPeT7\nO2ls9yNPm0em/nGJDPylZMBf4wOp5yHu67CLemGa8Cuox/Ejut6F0f9i6LaXjXQsY+2HCtAO\nhuOI809t23+dTOV+2RaPPhfl9BzkV8pN6mMEcg6FIbePpIE61o7PtXSBBeqY1CczAjmXTmWn\n/6892vYsBDgD0NA+VAQzE7xpU/8C045LxSBEfN+hPfefgLAvRNrPQj3bHbJkwvkPaHwrdB5F\nVTsMaewB3UeNbW61U+andou1e1NUnYo2cCDCW6jI9yk7ezWMRnci7Usv+lu8D9NJ+0p5Zqlo\nlBKe+Nba7s3afjlOvwl90uFg0ow2Ios1KWx3aNs8ipayG/xbUA/c1zdrWXW25LlRKQu8RVSa\nH2qt87p2+zGjrRQy1AXf3VCfMTZYh+OrOIeC4yrhDCYT+PdXdBX34PfOtJ39yeTk1h1FVNQ9\nbRuP1RHrZMjfF00E5Wi1Yn9UWwZ3D+i/Ie4V5e4kaG/vf2prRJ+OtA+H/Bh0fRj14ZcwQH+H\nY7tHbVxlYuqtKLu1OJbxAFeD9M0zuezPmiLRV6LcngP/bskfZIxjLHjARp+GfP1epWZ+6rwZ\nEAHEFUsL9fO60eTQb3Ha7o6t/xdlRV9qGbM/9ECV0ruDGgwIgzqop2G53Ike7QtjkwN5C29n\ndHS1x99uWdZ6yEDdEqcfQ129BXUHt15aqLvqEVvl0Hdnfr2w73YieP/6Il3x6ImWipwEGXvC\nM4Vx8I60PfOT8otyEq/l+Wj/L4S+R6NP6QUN6eNvR17+MJOavCLfsMpP0d+PN7/8iOamjs8g\nHhZAnT5drpJOoi7g46SWtHF5qUQWlegR9BvXg8VvLG2hbainosrIVRAYWWoqoqzDpF6htSZQ\nz/6Mq9dPRqKRE1CPhGMavdxddmbmaisSPQQfqz0hr90No4zxEVy1B9JFf4K6AEMR+mCsM3L1\nG33hnddV7JfaN61F3XsD8vA0xMNYp+5HZ3qhnUnf2hRtXot++mmW0lFb2/ebXO5no5Nbb/YZ\nyG93W9++OtL8DnA8DvWsEzKgjsxB1Ha0s0dgDt+sUukr8+vVXPzj2rrbD3iHtqxT4Yf2oPCc\noWpFi2pBPqLIGxYL9BN2Tn9udOrCec8wy8dYo+iX0S8dBCbN4PxANpf9eblF3q7WdfuD7em2\nsg524ijzIEzWa8IuTs/pH3yvfvO/ojrIvEOefz8e241FQ9CTBEISOBfhpXFj0KEjARIgARIg\nARIgARIggYYiIAaSzGVxVb3xHRYy6EiABEiABEiABEiABEiABEiABIQADSTWAxIgARIgARIg\nARIgARIgARLwCNBAYlUgARIgARIgARIgARIgARIgAY8ADSRWBRIgARIgARIgARIgARIgARLw\nCNBAYlUgARIgARIgARIgARIgARIgAY8ADSRWBRIgARIgARIgARIgARIgARLwCNBAYlUgARIg\nARIgARIgARIgARIgAY8ADSRWBRIgARIgARIgARIgARIgARLwCNBAYlUgARIgARIgARIgARIg\nARIgAY8ADSRWBRIgARIgARIgARIgARIgARLwCNBAYlUgARIgARIgARIgARIgARIgAY8ADSRW\nBRIgARIgARIgARIgARIgARLwCNBAYlUgARIgARIgARIgARIgARIgAY8ADSRWBRIgARIgARIg\nARIgARIgARLwCNBAYlUgARIgARIgARIgARIgARIgAY8ADSRWBRIgARIgARIgARIgARIgARLw\nCNBAYlUgARIgARIgARIgARIgARIgAY8ADSRWBRIgARIgARIgARIgARIgARLwCNBAYlUgARIg\nARIgARIgARIgARIgAY8ADSRWBRIgARIgARIgARIgARIgARLwCNBAYlUgARIgARIgARIgARIg\nARIgAY8ADSRWBRIgARIgARIgARIgARIgARLwCNBAYlUgARIgARIgARIgARIgARIgAY8ADSRW\nBRIgARIgARIgARIgARIgARLwCNBAYlUgARIgARIgARIgARIgARIgAY8ADSRWBRIgARIgARIg\nARIgARIgARLwCNBAYlUgARIgARIgARIgARIgARIgAY8ADSRWBRIgARIgARIgARIgARIgARLw\nCNBAYlUgARIgARIgARIgARIgARIgAY8ADSRWBRIgARIgARIgARIgARIgARLwCNBAYlUgARIg\nARIgARIgARIgARIgAY8ADSRWBRIgARIgARIgARIgARIgARLwCNBAYlUgARIgARIgARIgARIg\nARIgAY8ADSRWBRIgARIgARIgARIgARIgARLwCNBAYlUgARIgARIgARIgARIgARIgAY8ADSRW\nBRIgARIgARIgARIgARIgARLwCNBAYlUgARIgARIgARIgARIgARIgAY8ADSRWBRIgARIgARIg\nARIgARIgARLwCNBAYlUgARIgARIgARIgARIgARIgAY8ADSRWBRIgARIgARIgARIgARIgARLw\nCNBAYlUgARIgARIgARIgARIgARIgAY8ADSRWBRIgARIgARIgARIgARIgARLwCNBAYlUgARIg\nARIgARIgARIgARIgAY8ADSRWBRIgARIgARIgARIgARIgARLwCNBAYlUgARIgARIgARIgARIg\nARIgAY8ADSRWBRIgARIgARIgARIgARIgARLwCNBAYlUgARIgARIgARIgARIgARIgAY9AlCRI\ngATyCWyK9cTM8VrpvYy2p2xj/jGaGrolP8Ry2G9vX7dnc8R6jqUiu9m2nVVKW5ZltFZqJJfJ\n3RzR1u62pQ+ylI4iHwcYpVcjzNOhe5MxZrsykbuNUXdFormYxFU5o1XEsnPGjMp+JKKOMkp1\nG1s9riO560YmHr1RqeuRzppod8dexypbHaBs3aWiukPnzP5Gmz0he9wo84TW1t8to6ZyWj0w\nmhxGvCndFd/zOK0jz9PG7KFsM6a0vlGlzA0JNThenGdfW2e89biosfextZW27dzdY5NDf5Gw\nne3rjrZ09GBtdAfS7YTMUWXpMWNyd46kttxWXJ745petmawcvrSkEmes3rYNx/jc5/J/VbpE\n+KLeq1RfT6S95TgdASujx7IZ+zajLKupyRyptFplcuZRe1LdOKaGRpQCp1jz8eB9KJjuiwow\nrZS5PZPRf51Ib/5H0QQWelqr2jceHdFSX1RTUL1XtfQfFG1SRymUgcnpx7KTqd9PqB8NLxQ/\n6zOPT0apxyMmG0HFOxrZ69YqN2yM9YdESt+g1EBqNlbdd87o6Iqtej3q0UlaS7tXSa3Mb7M5\n64rxqYE/Ink0hXJuTWtnfJ/jnbqq9IxtsqirW2+SGN2x/g2Q+Vyl7DZbWY/g3J1RK9puKzNs\nZc2fE1ODD4H92qhWL0L5HaiMaUdi0p5ttOXtWZO9Znwy90ultk3N1+DM3u5Y7PUo70PgL6xu\nSCQ3Xzw/TF2PtN8OLWWac9qgre+QPgL1r7yLx/tWN9nNx+qI2l3abjYbuXlseuDe8rGcs5Ge\n9k2vM5b9LPTPTWD4sDb23ej52nJZPaYiBp2dFQ/eb2/o7oxZ56ACHgre6A/sP4ykBrd0tm94\ntmVFDraM3ZLV1oNjyQdRH/185ZX1/H7JryNWT9vG5xpLP80oGz1y5GFlbB3FeAJ9s1r6anSu\nqFHod9UjJpW+MRNXzWF5CMNm09qPtneobauopaXvVWi6ptkhpaU/tO7Mmdzd45ODf4afr59z\nevH/5fettlNX0Wdp9EutWWU/OJaaAcPCOrz4WsxJPLqpK37oiWhDJ2OM7Mkp+xErZ1+TmNry\nB4Sx58JxjwRKE0D9oVsGBM6FDt/GFse2hBODZZDzZaJCLLZ+jxYd/SjUeS02jJkK8zdMR7Vq\ngUGxAwPRBxITg9+HX50HGqRQxmFSckzEin4eQZ6PLQcVoSqGYzgYPDiGKQRLBDpDT42BwD9n\nYD1JGPGf78RffPxzclgYDCBmbGXfgCHvGEiQwV2sMUvCSXyJOz+e9tKBiTVPRwknaTk6yEC1\nzeTS541MbXtAfDrUmb3ReOzDMOzORRDMG91ygOHVDPlJN55BO3Hz5khx/+VwPorzD0KZ9w+n\nNl/on4vF+p7Solo/jrLsh19h2T7khh/8gR8+/O+aaE9sr7dhkv9+ZKwHrByDCPo3g2QaE+6v\nmon0x0fUtrFysjtazjqkuanpsyB6GgjJBDnjMNC6SeIhbxnIy8IPx0Jb3QfvvYWNnM93OCtl\n8g9Mnt4zOrn58vxzc/ui997/riwFvVWvlDHOCWJf769B748V6t2NCT0mpZ+FAk9H4BnolPN0\nslDqP53Jmv+ab5wt4DMDnWVxzrmDwdM1v37moM8P0ir9/lRq26Nz+i7uXo9at4/qaPohcvwc\nkSxEpT7nO3hN5mzz/tHU4JfhP29i1ak2dEfi1ofA7U0uMyX8gADlYVAHNDjipC9zTr7TNlBf\nZbECywxuO3LyL2kj/HwlJF2jLsxYufdg0rt7s9I/RLDDJKzvXIZo/1oNJCYGXg//Qhl+0Bp/\n+yK98Za3IJsfRD53m19nFMpVfTOXzP2va7zPT6onvh4LNE7fdQrU8+q3hl2umpHlW7A48+6x\n1OAv5seSI2fyfREKaC3iodq7zq83/rHnK2Uk/aC0mUcQ54Pg8T3sz/KQdtbUhHJX6hnYZt1c\n+SB389qCkr5vQBJGUW2CoCZpm3IoZY39J5DoR1Fw7WgX78Nvp8THOVhCSjZxCCIaO30mRGgY\nwZIXLE65eYJxI+19lset4PGuQh7d8bOegWpzEeQd7kjFPxEqP369kVT8fS/MMPT56HDywa+7\ni1ye7yL8uH1ry8egxCaIk7winyY6p4MWTtLnSn6/O6NzH5qY2PLkIiRdQsSmWG/MfACN6Z2i\nx8JAegqG8EdGUnd+UambRDe6xSUgY5GMf8djw4JJYzunZTV2FlaE9uciFzSQdlJRYsXw6Ihl\nXY1BpAMjYEsxNTBlkcnqT0eST65TKtwVgWLyqvHr6dj0RgzzGOQcY6RI51+N1OBxZNCVgS94\njMohvQliCpOBM3AZ6wlcTbgGY31PqXKoJNGbGGCCpH6USKb7e9uanmmikaswk4mVkok4GLzV\njxF+A+w1meQGdl3qFV1WPH4FdH6OTPSKRjRKjKRHsjPmlPH05nuKhelu33S6ZamLZFIFxMXl\nFESsVB4uCzEk7a8lkoP/D9FnJ4ndqq9Tx1t+Ar2PLau3Mo/hCtbJ4+mhuyX5nlj/ZzAZepfs\nI55j4Mi+71CeMJiUndO5daMTQz9202kFH/PcoPkSWZAjk/3RbM5eixXwP/nyF+u3s3XTCyNR\n8zPIE95l67RwBLjfjiTHXqrUTyZFh974WYcb1XwNIu5Wql4F0VVEV0pf5Lgq6CR2sTjhRCmq\nsxfusUTyERhQ15Y1yIPoNz/MGR298c7LwOLECnXmiYzOnYKJ8J1+/J74xrNgD1+IY6Etxss8\nB73RZqUczP/iSthH/JO4mnpQtKPlZtTcWBBOfjz/FwWXgeyrR1IPvUauAnW2rX9VJBKFgeEu\nHPnhKv26XB3ly3FHwSxsE5VkFzufx+Oj4PFhCdMd29iPq/M/KFf+Eq6YEw4w/28wSXNG6av2\nxWKW9sOVz+dEI5b0rfFAbQD9IKSN4CrqS8pf6S+dZrkzPW1Y8IhGr0ddOaBcXQELG+bkX3IT\n9ouLGfLl0uC5igRoIFVEtHwDyICOCUNJJysgq7DJJeKKtwqUlBL+BA2k8MwWJYbXqd6KTnUV\nOlV/ta+obAxamPzpHw4nBzYWDVBHz66O/lfgfo1LFmsArqOqoUXL5AOzjmnMLiad1VdcCQot\npCCClBW8LsPA/RKUbTxI2WJ+NoTV5n8rEFXu0OqNb7oWRs0JkF/WqIE+MML0Djs5cdSoumw0\nX2hv26Zjsdb8G0x8nJXX/HOLsS+TI8j+hD/RgkyrJ97/c9TlEytNbLy4j2WT6aMiHS3nYjL0\nMeS1Yvk4+c1lX6AjTR9FeidUSqdYPr2JzISdsY8anR66v1iYavxgtO0L4/CfiFvROPLlIz9w\n6sqR1ObTOjrW79ZsIrjtUa0OwsKXUeuvowGEIE00l9LOCYfbWxMTm/cvHSr0Gd3T0X8lbms9\nqVJZIv0sFHwcVwuOkqsFXfENJ+E2p2ugddn+VTTy4r5jOLn5q0qtbenp2O1xeHZUynPZ3MgC\nBfqCtDGfbNEat+mWNjDLytkJJ10e5p22zt2iTfRXtXCALOkTf4V+4CX4BZLqXVfrhv2sJkvG\nzYp9a34qbn70CO5dP2pycvMj+edq28eVo7i5BZl6WhBGTt+izI1YFHsBFsVkQY1ucQisKANp\nwQrg4jBaVlL2gDZySTqBbRzbddhOwFbMHQlPCXdesZP0W4EEItEvoZOX1cmKgzfCNKMDXtcT\n2/jipSWxKYZbzr67Eo0j4SgDGm4taUE5dGO34uQ7CHspK4Trw1yoHfuByhbpn90Z3/TCIPIl\nDK6mvBb1Aavp5Y0jCSv5wqRxDyse+4gc5zkLxtEFmK84t0nm+S/aLuoNVuz1BzCxd27L6o1t\n3ITjf6000RUFJC4MqdWRWOv/BTWOXMW1BePoEvB5fpB0imXWqe9om5FIBJPlxXMwjn4MaYGN\nI0kZ5SdurSxUNJnIJ+HTg+NFqatBc+ZogH+Vwks41OV9cSvk/1QKG/Q8nqVaB5knBylLJA8u\nutfldHQTjKMfIJ2KeosuEhd15vPyjGV3vPf7NRtHjlDnroC+Fq1wxbBxjKM5HvpzMI4uleNa\nHNhKn3gSrkTVvMDntEmj2yCzYt+ar7Nbvqaz1VJym/iiuZ64/V7UmwMgP2A9c670Pa+no/Wc\nRVOCglYcgZVuIMVRYnJ7Bi6vO6tXD+H3Bdh+je3j2Oh2YQKyCob+9ExsMnAEdrjN4b2BAy9C\nwJ4OtRGTU9xas3KdTIZlW8wcymAJmTAOgjoDW8UEXhzB0wP/HUq+c/um9WZ5psLXCMb2ydg/\nGIqGmmj48YP/miwmrHKbnZhi7wurN8JvgKEUeKUV4fF8ttkjVDpFMgMuUdSK0zpbNxxY5HQV\nXn2rEekop2aEjo3JtVEfwjT+34IYCqHFL3IEPA/z7sUSiXL8b8gKXkfdW5Vf1xU7dD3iPUXq\nQ1BdUM9MqxV5C2a6fdWVU8mUdl9keSUTWtwToIe7OhdJd1kYkLKs2jltEW0SWoUaN/0EkT7i\n6bPk+SXfr7bfo5swJr8DcoPXTyTohX9fbWkz9komELjTalAI/wW998H2EWx7Y5MVVHkg93Zs\n0kl8ARvdLkrAaorI7VehbqWUgR4Tv+fL7R9LhQ1PkZyG1bEQE/2l0mxlpeMOmLiFCG/qq5Qz\nvKkK/Yk+qFK4heeN1d1u1sz6W/qlMFkCGx6z8ULuyKQEs6wzZGUeE9BDQ0ZHcIOLmMWfzysl\nC2nKxK52hzZqRa2X1C4IV/3aW95arRzJDzJ0FOKXu027WvGLGs9V1XTiJV7YanPyxjTIe4Yr\nM4wsjUpjnS1XbcLEknqGm243Ir2K7TCoXOm3g4ZdbuGgOwyAxWlLIgfucHkpUbX5tKLos0KO\nm4VpoUJkWlXLiwv9qznG2+qOwy1zbdXEhR7743nEA6qJyzgrn8CidUDLFNXx0OtxbB/DhmcA\nHCevX/1XbHhAWb0D2yPYPottMd1uEIa3pAReYWEDXUz6AWUZ294fK0/oI8M5DDDRztbd9hyb\nVveGi1ldaEwvDmrkAb66XO+cWDIZ6Wnb6ymJKfVQOQ1M1N4f8z7nfp1y4QrPobJlcAVnf98f\nL3M+CFO3qlZifRlBf3Eb4x6tRs2mHTTeMgiH1wWbxdHbUkfUkh+ZXeK2Lxi07psFa5FV77ii\na1fr7s8enXZuK686uYgd2S/EtaPZdABK3rh4INQIPc8A5afgeZXQ7Ws28SI7wqOI9y7p1WpH\n908p9Vg1mccK4X4wYmtkaWx0n/tXk/6COK4+ssgU2giWZ5F0NCd6LMlYvkB3eixrAqE7rmWd\nm4XK7QWv32DzjSM/hLzd5zTv3Kfxez+2xfyGhKQ3jC3oxMdf/cggDt1SEdCWjaQwhod3+GaL\nxF0qt5RpLVWelm0607py2epsxK5m0uhmWl597jq86zgXelT3I4f/RV2H3g3pnLZas+YAIK9T\n3mUcLpwUjn1V5D1adZ2BTVJ13CoUZZSABDL4IFPAoEWC4UbTRXComzXoMKeA3JI5dxR2T65u\nzvXHYWMz/MomsNINJDF8TsbWiq3wVip5YcPLsN2I7QfYHsaGRZVFcfKWKud+/4DSjkO40wOG\nZbBFIoCxe7s8kBFWHFadZkanM3LlcYmcuQtrqYdj/XMJ59JLlLXllgzeeDU5mau4sjqt1b3y\nhHJY9TGSN+Pjltv9eHio5W5ciZJv5rT4fnX83TETsbYvRUKLnAd8/meOWU2ybft2fK+qahGy\n4oyrR/Jdl2Xv5ArMyPT4LbUqaibT95l4q/O9pjCycMUyirnnPVjYlw8Yh7xFWD+IOIeESa9S\n2MW+IlUpveV6XjiYiH1vtfphyNxei0ki6aIfxLf6FqdN4yr8dkjDXDZ8q5Srivhg82x/XC0T\nxluZBKofKRqDxy+gptyD/QlsexZRWYyiU7BNYLsS26nY6HYRAtO53NXoqEMN3Bhasliw+mXY\n7+XUghRf/cNbt5xv9dQiZpeLK/OAMJl2ytaonwd57au8ohbS/xY2Dax2ZhKpHb/y9bJN7qdh\n66AfN9Sv8w0Sc2kyOfA49L4trN5ISz7emg6TpqQhLkycYmHxzF8L7gG4qti5sH4jk49/LWwc\nP7ybF/sP/vFy/vW44y6Gy2Vsq8mNq20JGCt/QUnCOAzlTM7W30PfFW7m6tbVzUhv0e6oAI+6\nP+cXikyIwOAw45VniFjFg0oZog+6paaPtWbtK9Emg94dU1wRLDJkU5M/K3EylHdiKv0H2Eay\n4B3KeUzvSkxtfTBURAbeZQisdANJXg97BzZ51kgawTpshe4f8HgxNun8P+adDNehe5H401gE\nJie37sAK/hA6ypkQmkfwDcuPhwhfc9DhVGIrBrVEFROUmtNeKgGSt3rkD2UbZpIVwXNpspgS\n0NkfRcDgEy9M/Gxj49nE62evZo8mt/wKnc2t0HMRboUqrTYmNJFcVn/JDRFeb+j4bcgI3C86\n+cG3eELxKaI+6oSU30WJqcGHipyuwsv5eOqN0K86w83oD2HC//WwxmIVitYcBRn8SM1CPAE5\nlZOxMTgz15j++thU+hJUmnuBO3g7QZvCh2a/gSH5gqrLaWHG8RibemAR5S1MoU4+eJYL7AwW\nZKqss/P0EhlOWc7zDXPgtcWLoE6YcXMuCdcA/v6E+pE8hrAIblsOfdOnoE+YOibp2nDSh9OR\nQFECK91AkonIsdi+jE0G61INWm5DOAbb1djodiECaaPf5RoflSeoMiBgdPnGyMSW3y4toqvS\nGCM3Ic3gE5SlVbCm1DBky5fNkxAiV2XCGDQl04UclJX+Fsp2BOVW0fiQ8LhF40sY/H9fUmjB\niURy8GKk8dMgk2Wv7tw7krIWGNdYmTkbk8iMw6EgjcU4dPJv9HvGpgfuFXnQ+4f4+YnoVEm+\ny0XdP5xMn4dJyNtxXHESIvkA9yyecni5pBOETzE9XDkmkTZpWeBaNIePQ74C+oValQcrcZsT\nqc3XmGT6Q3jA/GHotyh1NWjGXBWQagUn4dBV3DHifGy1QuCAp0cnhnAVW/0wSFkKF+GjkvaH\nnKuxObsfbSvn6lU+QcS18RKMt8gVDtTTtyD0cJB45aQivtTzb9sp+4X4DaRHOXlLec7lod5s\n2zk8M62xiCRlW53zOPxoODlU8zeVpE2izwrUt+Zr69QNZZ7IJFPvzfevdX9kIiEvxfprUD4O\nV61/NpIaHKw1bcZfuQRWuoEkJScTr7djOwDbZdhKuX/ixFpsz8V2SalA9F9ZBOSWoxmdPQmD\nz45Sg790ptjkFqOBkeRDUpeW3A2nhq5FoutlkPMGuiXXIejgE0Yx4YqBdjiXs1+Yy6rn44re\n/aXLQTRAjDLOLyut7O+NJAf+HUUnZftYaZle2Srz/URy+t1lRBc7ZUaSoxsg+xqolS2lG/xl\ngnaXzk2frNTAguccoeftWKFf6xiJ7sp7sbQW+JVKzw/osZAr4/+bSA3IBGLWwUjYCOPuqsp6\nm//f3r3AOVLVaR+vSvoyPd3DzPSAIAPKCihydxEQUMEL7iusIMi4zgXBVdBV131dVtb1/qK8\nor7q7rquvu+qi84FcHYBQRS8cXEXFESEAeR+l4vQ6W46fU9S7/NPqnqq00knpzvp6SS/M58z\nqVSdOnXO91SlzklVqh/QfVJvUEc33Z/e/E1dQ/pYId8yg06VX7djpVWfEwaGN92eSg9u0MHz\nk9m2M1Wo2ITSayAWPKlx4+uGh7c+HVtUg8mtz2ZyY8dokDRe2dBS2D4XXN4/PPEe23i/t3Uw\nN5l7vb7Z128YS992WFjL1ps9FPKePY0tDdM9q8myHfzYNh9IpVOHVc7VLUUq/fiZGiT/UNsp\nu6+bh7kEmfHXpbzN+due+ka33KwKnCzv0fJe+S8I9FmQ+599w5u+F5Ysm0pnD9T0nAZJ4f6f\n1R+82ZJKP/HBQW/LQ7lMTneL+GXLX649wn2+ZHtG7pbGTbR8auVlX5hMeQyMXHybnvt2stYo\n2/7lcgvLZ18SXaXj/p3l0rnMLxyTk/ps9Z4u16Yz8rNjxQ8ez05OHle7q0fRVn48PuGN251A\nuho/ezsUlgc/Tw3l/z5myTaNcuW1tQVaYYAUb+FqPsBu0Qrb4isx3dwC+rbyHn3beZC+uvyy\nOgCDVtvwBBXuL8HdOT/7Nn17rA7SdRWvRtRLK5XeuHVycvIglU6dFDuBWsifDAqTmg4n8h/6\nxdNRuWx+oY5Riu2v+ZqHCaN0YdoBvW7Vmn8ovC9sK0waJonnWzhJ6aQ+rBNo/payaCtT6+Tn\n576uAer+gyNbbrUrHH1D/qFqg8+rgP1hpurMTF21eEqDqXxnWfOmvk0t5Dt1UtxmHYm+wrfP\nOX0LfXeQHjtADfqPyjPfYdO68as1Sp97ayq96X3V/PZoquxTE1eO9A1vPEm3zv2l7oN/uFDm\nfCcmv5+obM9pUPEpddAO7xvdmrebWjU2YbfajWUzL1f6TfIaDfPJlzNyC+tZuGoRBKPq+N0q\nq7BOBfvCemFKL/hV4GeOVd1K3EaydVQDs1OU8l36nfJD4fas81Uot3VK/eDT6lC9Mn57W//Q\nxi/qAY42uPjvQhvkB5hhmbwxzdvsZcb2H0hvubZQvStH+oc3nWw+07cz1V75ZFbiQnr9H3gj\neoD6l3Sl5sC+9CW/n5pfw4nBka239qWf2k1tdrXVo1zWGkQ+p6Jt0H50qvaPqStuA2NbdFVt\n8E+13udU8JStb3bKK7rCZsdLftrqZsHS5FNtP05l7Zt3bHk+0fT/dJzoIS1fUFvsPZoe30vr\nyL6QX37FcLow4PMvUHu/1PN01bnm4box5X2atvxODYIfsOytvtp8tM+Yw+fMpX9062Pxzeuz\n8+psJrt/zg/0GZL/ksdKHf8Muz6byx6p4/Zr8fU876JntE1rpwuntqMJC5YunIp9FuT3x6g9\nf6/tnZYa2viu6HNb7XZtKp3ZU1Y3TM+jkJ9sw3yL62W33gbnl2pr5XWflq3VBZ6zdDw+GpZL\nLtv3K21ramBTKHPhdrDQINxP4h7BDcUe/SObrlKp/kT5/1fpstuWdfSEIUqj4+5BbedMOb5N\n+3D+syVKM59XOzbtGNUWv6qNRp9DU4PPafX0vAGl+UJqaPyQwfFLHpzPdsutm05vfVbHyJF6\nMMi52tZQlC5ysPeafk7/vUcW/6PUl1XROrwiYALqbxAWgcBRKsONivaAqamT8CIoVwsWYU1y\n+dLOQ/RXMVcn/OyoOs/3Ls4fcZ60bOWy7kMCL7lzkLOnL+qL0oS/VCerfi89ckfQ2bkq2Zbc\nR4//atMN2jslE94eQSI4QE/86dTT++7XCfNePWD6saA915vL+hNJtXSQ1DIv+5x+qzKRTCZe\noa7GzvpDJE8m/clfxTuqy5at3a8tm/gTnWy6tM0lWnNPPQ3wxeqMDOihvk/puUCPaJ7dNveY\nbmG403aild1rDwq8tkP07fJuOZVRHYnbnx+5R7e23lruNqXEiu51B6ujvIdO8OO5bOb+gbGL\nla+euqI/7JdM5vbVH9JYki+D74+qMz+sB1irrWb7rYq1bfuhCS+5e6Ft/XtmT29bcwvLO/9i\n78g9Vv+pTkt1ub25s7er9xW5tmBXuQ5mvPG79CBOPRIse4A+sXdKZpJP942O3RZ22PNOuqlN\nJmrjnD+aS+QezHjJu+zqaHXbk+lUufX3fXzv0bDdZi239oOdk0HyQHUMlycy/jOp0T+oPbf/\nvqrUtrdvJ9EW+Dm7TS2p/eVgnYh2TnjBHzOBv21wZPz2uQ1WS22xqnn+iq51p+jpdq/VA1H2\nUlk0uEncqNuarrGBUBU5+Cu6N2hfDfbUwGEim03cH93OuLJr/TFewn+1li3N+MEDCT/zqOd3\n9Gobff5QcLtdZenpWXuAMN6kz5y9NBBql8uEUDqzWT290s9ePzhyiVy3d7YL5Tm7fWVP+m16\nsOX+Mhzyc5O/TI1e8qsqylqzJNFxqO136HPicV0xvEOZz7rPFDa+pqu3q1P7d24XdVYHcunM\nNnsQRDUFW75k3RsTCf9IDUradOzfHySDJ7S/rtQ1ob6M155t84Od7djO5SbvKx6klcg/2duz\nQYMG70DVYdjPZWR48Y0rlrxjr0Qy+dJYvbYpTTTo0vG24aCorXPZ7H3R51KU/06d6/Zta0vs\nrfWTfiL7iD6DtWv7epJfLpPJ+YN+MrFUN8v16AePOo7v1XH8krberrZDc23+C6r3OG7J8q7V\nf55M+gfqVla70vRcIpFI6rO1S58BGRkM6wuUR7QPPTA4tiX/BUhUvvq8Tj9vernkkM43O2l/\nXqJ9WPvGFts3IsP6FKEo196e9fvrC45jdSayz5Y/ZLL+Dc+Pb8oP7IuS8rZ2Ah3Kyr6cOVrx\nptplS06tLGADJDux2M5FQAABBBBAAAEEEECgkQSsD2t9WevTNnxotVvsGr7BqAACCCCAAAII\nIIAAAgjUT4ABUv1syRkBBBBAAAEEEEAAAQQaTIABUoM1GMVFAAEEEEAAAQQQQACB+gkwQKqf\nLTkjgAACCCCAAAIIIIBAgwkwQGqwBqO4CCCAAAIIIIAAAgggUD8BBkj1syVnBBBAAAEEEEAA\nAQQQaDABBkgN1mAUFwEEEEAAAQQQQAABBOonwACpfrbkjAACCCCAAAIIIIAAAg0mwACpwRqM\n4iKAAAIIIIAAAggggED9BBgg1c+WnBFAAAEEEEAAAQQQQKDBBBggNViDUVwEEEAAAQQQQAAB\nBBConwADpPrZkjMCCCCAAAIIIIAAAgg0mAADpAZrMIqLAAIIIIAAAggggAAC9RNggFQ/W3JG\nAAEEEEAAAQQQQACBBhNggNRgDUZxEUAAAQQQQAABBBBAoH4CDJDqZ0vOCCCAAAIIIIAAAggg\n0GACDJAarMEoLgIIIIAAAggggAACCNRPgAFS/WzJGQEEEEAAAQQQQAABBBpMgAFSgzUYxUUA\nAQQQQAABBBBAAIH6CTBAqp8tOSOAAAIIIIAAAggggECDCTBAarAGo7gIIIAAAggggAACCCBQ\nPwEGSPWzJWcEEEAAAQQQQAABBBBoMAEGSA3WYBQXAQQQQAABBBBAAAEE6ifAAKl+tuSMAAII\nIIAAAggggAACDSbAAKnBGoziIoAAAggggAACCCCAQP0EGCDVz5acEUAAAQQQQAABBBBAoMEE\nGCA1WINRXAQQQAABBBBAAAEEEKifAAOk+tmSMwIIIIAAAggggAACCDSYAAOkBmswiosAAggg\ngAACCCCAAAL1E2CAVD9bckYAAQQQQAABBBBAAIEGE2CA1GANRnERQAABBBBAAAEEEECgfgIM\nkOpnS84IIIAAAggggAACCCDQYAIMkBqswSguAggggAACCCCAAAII1E+AAVL9bMkZAQQQQAAB\nBBBAAAEEGkyAAVKDNRjFRQABBBBAAAEEEEAAgfoJMECqny05I4AAAggggAACCCCAQIMJMEBq\nsAajuAgggAACCCCAAAIIIFA/AQZI9bMlZwQQQAABBBBAAAEEEGgwAQZIDdZgFBcBBBBAAAEE\nEEAAAQTqJ8AAqX625IwAAggggAACCCCAAAINJsAAqcEajOIigAACCCCAAAIIIIBA/QQYINXP\nlpwRQAABBBBAAAEEEECgwQQYIDVYg1FcBBBAAAEEEEAAAQQQqJ8AA6T62ZIzAggggAACCCCA\nAAIINJgAA6QGazCKiwACCCCAAAIIIIAAAvUTYIBUP1tyRgABBBBAAAEEEEAAgQYTYIDUYA1G\ncRFAAAEEEEAAAQQQQKB+Am31y5qcEdgusKpr3RFBMvHnnue/NPCCXX3fW+IH/rimn/MD74Gs\n7109kN50vdYICmsd17Zy6erj/aR/vObspXljivfmcpkrBkYuvq2QprX/X+G9dUWyu+ekwPOP\nDfzgUN/zl4pvUqb9Cc/PBb43JuOU3t83mc38tC2R3CvhJ14jz9VBItfn5bzbc9ngsoGxLY+u\n6lqz2kt2nBr4iUP9nLeL8ntS7XJjbnj8B96ytoO8XOIE3/f3kbiv+Q9m/dyPBtJbbqjcAoe1\nr1z68jf5Cf+Nati9fC9YqvJ2Ko9JrbvSS3irVJ4lKveEcn46CLyfZiez331+fMv9lfOemaK7\ne+2uHX7iFNX7lfJ4gQye9nzv15ND6cuHvMv6Zq5Rec7yzr/YO9HWfqrKeqDKukLfKj2hulyf\nSg/+cIXQkt3dJwe+f7RyOlDbWm1pNN2laF9AqbreqF7vy+W8rw0M+//peRuH9X5RhBleXpBQ\nqZNBzp9UQ4+q8Pf72cxVqdGLbqpU4N6ud+zpJdpOVX1fo93k5WrrtpznpX3Pu0Xr/jSVfuIq\nz7vOjuNZwqkvXNnT9XG13RuVaE+9JrX/arcInvW9xC2ZbPYLz49uuXmWDOKL/BU9616TDBIn\naD/YWwuUUfCAl8j9qH/oov+KJ6zd9LqVvd2Jf9C+/Gfa3C5h29+bHQ++k+z0V2hvOFL75q6q\nzx9VplsmPf+ydHrjH5ctW7tfh9d2io7JozV/H9npEPH65X+Llwuu6R/5/U8871Y7ZqoKPT2n\nv6DD996qGh+e354fPOP5wc0TwcTl6fTWZz3v9O7enuBEtc2xaqM9VM4BHffbstncpYNjWx6q\naiNzTLSq6/Qjg2RO54LEvsqiXeV6yM/lrukb3vILvVdxCNUKaL/Zud1LnKLd5YionbXf/Cba\nr6rNh3QIIDBTQJ+PhEUgcJTKcKNip+LEIihPzYpgnctke/u/K8NXq7OjTnC+jvmeijrc+f1P\nnRbV2bfB+p3ZXPAuP5FbnvCT31Zn4kXqZGSVrMN6NlrfBlQy8n8eZMfe3T+69bGaFbTBMlrV\nc/qH1LE4Xz1HDS68pFnmjcJXq040T1MZLW2ToM6d6vr6vqa9nPAnNKNd8+5S8v3lm9H7DrVK\nQnlltZ51VqyTbw1lbWfbUnJP7ZBfb1suyJ05MLzld/n5Rf/1dq9/k+cn/k0r7K4sNIawdfJN\nny+bJY/KHE3baxguzqXT7x/wLh+IZsz+qgF1z56fUTk/oqjqee1RPaxeWjen8n+2b2jjBZrW\n4sqh11u/U7DM/5pKvqFgFXSGpspPlr43of/btE9qsW1vexuEudt2bFmh0oU3Y0r+/r7hjRfa\n/B0X1iR7ezo+o+KdK5+4V97G6pIvW+CN5Y85G2ROeGcOjW+6d2aZj1uysmePL2mFv7JlWjW/\nz0Rta6+aa/ubBuveB1LpjVtn5qHR8rIN35Xn6dEyK8P0PKIl3p2p9NMahP1scGpO0cSK7nWH\n6suAC7Xdg7Rd9RcLnztqedUnv4/flgu8M/vTG+8sWnXOb3t7NvyjtvfXau28XVR+y1DTtlNq\n0zoKfQ36CseffZlhaR9U3M+MtDwRrRe9apnm+3/QoXtWanizBkqzBWvXzk+qTT9qqZR/W2F7\n+hwtHAdWjKtUoNdp4TIrq4I+D6LPV69DVt9LDQ1+yPOuGJptS67Ldupct29be/I72uYxKsu4\ntlP0eeLd52Vz70qNbv6Va94tmD6h/c2+SPiY6q7DZkY7W9tfkEqPf9bztuqznIDAggh0aCvj\nikcr3rQgW6zjRvIf5HXMn6yrE2jKAdLypesOa0smf6EzclfYOZ5VQ+do+yC3zpR1sHQOz3fO\nZ6yj/KyznvaCzGtT6Yusc99SIexIrrOOTS0qHnVCXfOy9rJOl17fkhre9NP4+r3L1p+lvt43\nww6Y8+eMdSB12n98PDf+quHhrU/H8545vaZjVc+Sq9UhOEYm9gFdMihP65Be1Z/e9DYlsMFf\n2WDfzHZ4yZvUf9xzqnNdNrXbgnzdguDLMjvXbc1apT6svbfn5T/WEfYaHWNlveJbMzulnQgy\nmeOnX01a0yP7G5R2/2qcrO6+l/tUX3rz+fH81dm7Xe8Pst56fH6p6fz+6vmjfenhfTzv0qeK\n0/R2bzhe2VwZdRqLl9t75ZHRhib1gXOCrlxfVyqNyzyV/2dK//pqyl+cb74+FeptafL9YD94\nb2po07eK8yi8P66tt2cPXaXzj5utXStuT1+ASOixifTwUXO96lpcvp2Wrj+8PZn4uWqxRGWz\nL0pmBJUr//mvYfHb+4Y2XzYjATNCAQ2Cuzt/oBPkm8pZWkJZT+j/63Tl9kRdubUviQgI1Fug\nqQZI+Y5ovcXIv/UEdvLW9OqWrh/ppNc924d4XEZ9hKTe62qIp29RSw+OLL2WdejTfyfPa7va\n89b0xPNo9ml1/v5OXxfWbHBU8JToHIK1lzqhuqPNv2zFknUvjrJYuWztqzU4+kahHeeat9o/\n8PboTHReoXxnLZ866P9UaXBkZVNJ2jWgO3FlzwZ9qzp7aA/aLlMH40XVdPpnz2nmUnNRYc5Z\n1b3+jJlL6z9nZc/LdaXDq3pwZCUyO3l0eW3Jq+z2raiUst+o6aoGR2E+icBLnLdi2Ya3Rnmo\nPTZpuqrBUSEPdaG9oGtVz9Jbozyi1xVL3rGX7Y/5/bLweRItmvaqfVdX/vxOfdj8oLdr/R7T\nFjq+UTt+QavMaXBkm1JZZt2/ozT5/Sbwv7ly2fpjbF5x6O1Z/WXNO07pZh30Vtxe/mqb/6L2\nnu6aDFKWeaesakv4di5YavtRcbmj9yqXXQlv02fHRb096/eP5vM6XaB3WecF2mn0JUB5S1sj\n3A+OC/eL6ZnwDgEEKgowQKpIRIK5CLQtW2KX/pfbSc9l/Yon7zAzO5GqV7GLbhP6W5f8Gzlt\nT8+aXVTv86zui6Ue1l7q+LQn2hIXRGXyg+S/6pvL6O2cX5V1Utm8YmX3hnXlMlnZc/qB2tLZ\nSjtrpzBa3zoV2m/OjQ/oomXRqzpnp6n8R1WbZ7Sey6vKkQgSia/Yb0Fc1ptvWut4apD4vrnU\nzcqs2w2XtnvBp60cK3rWHquByMnug0j90i3w/8XzDmvv8tasVnvYgL/iICFed0uvdt9Nt9J9\nOD4/0db2edsfq8nP6qP9q9Nr8z8Xz8Nt+qgu1eYcx+K7bWJaag3rgoSOr+lhWeeGl+lu2A+q\nHFUdB9PXLvGuMEg6elXPulNLLHWa1d7T8wntc8tUtqrOBWpX9Uv8rzptpEUS2y3r2mc/rH23\nqnYu7A+JDxb2jxZBopoI1EiAAVKNIMlmmoDtV+927zhNy6PyG53E1cfJ/+6hcuLGT9HuLXm7\narHojtmwU6ZBxUnLVnavPVjv7WpAVZ2hKlrFvlV+X7l06iicqZ511T9et3zstsBke2J9uTxF\n/N7896/lE9Rmia6C2g/la5NZdbloVHGGq9e0nHXM6fLuGTa4SXrJs7TM+fcNak8bDO3W273f\n65b0dHxyWv6ObxKJpH4rE4WT9Jsa7zRlX1XnMb+WDQQCb63nvUUPOHEPK5e+RF/Q6MEWtlst\nQFDd7Ar7wSu71x8U31xbu/fOebVrPLPt09pd7FiYT1iTlMxfKnZWm4vqZ1eZju/uXrNbteu0\nSjr9nvd0fX45ft55k21tgY5ZAgIIuAgsus6WS+FJuzgFenvW6glW+Sd51b+Avrfbyq41L6r/\nhnb8FvQz7+Ps1qEdX5JSJfD9Vd09R+rhGq/V7Y/21LaahEJnOniVMivdAQ284106X/lC6cfh\nesTfG8sVUM76LdNCDER1IUW3upUrRz3m6yf5enBG9Z3VMmXoXr70ZQerSey2sjldzbTOvK68\nvFbMx5bZRsXZ+X0j8PaMEtr+N8eBbfvKZcsPi/JxedXtfG92SV+TtIGeiii7eF4Jfw7HQTyD\nEtN2DKgz/uoSi6qetbK7Q1csPd0O7Rr8yU6/Y17bdt1ig6S3z7slTmW1LzUSehosAQEEnAQY\nIDlxkbgagWyQ2E2/V5j1R/DV5FNtmoTX3hrfNPreHoUBQ7UyC5fOOrw5L7GrnqygtlDXqobB\nOuH6HUNvqSw1mNm11PxK83Rv1e6l0+iWN9/vKr2stnMLHVA9FnwBgzq8c/KKF1G3sGX0LPDd\nNLhbFZ/vMq119RRqa7tg5/nt0/mrN/lN275n+6FLOSytTPQ0Qttv5xB8f5c5rDXfVbTr5KaV\nV8+gm/Z+vhuYWt/3dGVtzZyPB9nO6VygfcMeAFOfOk1VrgEn9IXgXEqt8/Gc1pvLtlgHgWYR\nYIDULC25mOoRZAet87dQRZpoC55fqG3t4O1U+cjrhS+lOrz6vZD/vK4e6dHLOh3XMKhDHgx5\nbaUfOez7pedX2L6upJR5RPTGUZXe+baxCpsrudjqpcFYf8mFdZtZk2NFd9d5z2tkMTL3YgYZ\nra88/LTyqM3+EiQG8/uhY6G0jh4MkJ3TZ4h+gGflX+Cg/SaYsf/OqfyVCq5dVE8/2zpWKV25\n5Xq4+/NzOxf4fjbIlTlGy22tBeYHOmbmFua63ty2xloINIHAgnVim8CKKlQpMDgycm/hxFrl\nCvNJpttNhoYGHp5PFo2yrrpFv1VXcs6dlXrWU52g9iA3uU3f4G9Tr7+2twH6/iPqpOmRtTOD\n9rPfuu5rSq8rBsFvZuaWn2N/r+f+MstqPFt/nymX21bjTCtk59/q6jUzQz/IDA3frXHwHcpr\nzoMbdZ5V9+D388jCtj3V8dMf4r3T9sOZ5a00R397KDd5Z6VUpZbrrxjdXmp+PecVjq/p+43+\nxJna1f3qWRXlvE9p5tzGudGxe+a0vxVuI1vgY6MKjR2f5Deu7Wzp9YXQjCc+7viqUAIEFrcA\nA6TF3T4NWjr9gUHf+5nrB7lrZXXitT90eoXn/dj+MFnThyDIbdVXx1X/2HmhQNTOWcU7BsYu\nfiQ13HetI5I3fwAAIGxJREFUHrM1XKtt5/ehINhULj+NZi4qt6z8fL8t62W/X355bpO6hAux\nTyVy2aAmj1IuX5fpS/SHmC+ZPsftnXV2NYC8If/3cXx/s9Z2vqWtsEX9UaVE5ofZyZye5De3\nYAMr/dPf/SmEwbGND9t+qFj1FUDloT9E7f2mb3TrH6J8XF4nx7NfdElfk7R+kE4NT147La9s\nTu26/XbDacvm+kbHgG5/LHvsVZNtv7fVrgJdmz+Oq1lBadQm1rKPlvsD1FVm05zJAs8+txz7\nbdovsvM77psTk1ohMLuA44E2e2YsRSASyGUzH9N0rZ5kFmVb/JqYnCw8crh4QTO+tw6Dvj2+\nYoE67y6E9pOBcwsraLCa8z7l0iEqt6F8P8n3RrPpXNlH/g4MbfqBfkVyd7XbU54T6uD/ciB9\n0fXlttuXHvpnfSM/ojzr9js6lUOd+OBbA2NbHi1XjnrMHxjZdKXyvbNar5ll0IMlsrl/sPmp\nobELZf+M6qLbsKoP+TYIvK8MDV303ODYlp/p2+2HNM/pKkWYPtufTpw9bcuF/VBNXG3I38r1\n99WmLk43NHHRPToeb3Ytf3E+1b63dtPvpT5VfEW1f2TLjzTQu23u7Tq9BMpHzzHxhvuGBv9l\n+hL3d9lcfn9xORfkNEqac5u4l7Bx1sj/QW7f9jf7I7CVg6XTIPd3/SObpr5IqLwWKRBAwAQY\nILEf1EVgYOTi29Rx+Dt9QFf9ba4VJH9irmIdS6erVH81NL7p3rpUYJFmmk2P/aW+XVWntLoT\nZDXVmE/nTuWYVKN9OTW85ZpoWzqJ/7Pm/UT5VnUSj9aLvxbK5OfUTTtt0Nsy2+90guzkxKm6\namUDmlmvZlh59MPvgdFcsDa+rZnTVwzlguwp2htz+f1sZoJ5zQnrdk8qPfi388pobisH2Ywv\nL2+4kldx9ip3Rp3wT6RGN/+qsGzrhJxOkmlGy6o6zq0N9Luj2/qGxz4d5d8/NPwaTU8WXKK5\n5V+jdPoION3zNk67WpnfD/3gK9XUTfloYJf73wPpLdOvxpTfdMklqWH/DQVPbXUOIapPpVWV\nTreGetf0pTd+rVRaXY07TcdBulLdK21P6+uLgSBXOAZ0N8A8w+DIlluV3bnKt+I+ki974F2Y\nSm+e15XOeRZ5ca+eydmfexiq3M76PNTV/Oxk9m2Lu0KUDoHFKcAAaXG2S1OUKjW88avqOLzf\nTuyVrnpYmsIJNHuezs/ftJN4yROA3fqk3+HodrMzUkObvtUUUA6VeN7bmhoPxo+Uq74tDqxj\nWlWnzNJZKN6UZtmgwgYCMwYXmqf5FmZeSdHMfHvpz3V+RgOi8OrRVO5Banj8VL37Xn71EnlP\npSwxkd+iHr6gH2n/Wf4b0xJp4rMGxy95cHJi8giV5VGrR379WIJCGfJXOe7NZccOHxnZ9FRs\ncclJu8Kk0dkbtLC/1L6rPHVbYRRm+pTKNEqtAe51ufTQqz3vynk85KDUFqqbZ7eiZSayR+iy\n3yOlvGbkomPO0in93/YNbfx8fLld1czkgmM0z64kzdiHorS2D1nU+6tSQ55c478pu/SpTHr8\nAC0bjIyi9YpfbbnmWV6n96e3XFy83N7rc+Ejtl8qjbXRjEG6zVPUseN9TB3xT5bKw23exuHU\nUHYfrfOU8s2H4vVLzQ/naZDm23Gm19JB5cwfh0r33b7hu+24mnEc25p2NTI7MXm42ukhrVPm\nOLBOc35wbHnOHLDkby0NUrp69HoNHG8oXSL3uanhzV9WNT6ocpU8F6gs9nmS028Dv6JjfvpV\nQffNNfUa+oLiiWzGO1y7wf2ztbPtB7Y/LPRV6qbGp3ItJeBy2bulYBa4sntqe+9W/JzizJPW\nAhemlpsbnbjj1q7kQRfqZjvd9uLvrisLPcrfboFRZyl/J4x+RhI8ramLJicnTx8cvfjSsYlt\nP+poO/CH+tsNS3U7yWr1BvSYWfutgP+wugbfHvPG1j4/fPGNtSxnI+U1OXl3Wq7f7uo46G5d\nBF4uu9WibLcOlz0yWSdN24cU879JMLeH9P4XsntS397vovT2xzH1sIfgDrWHrv5MrF3S0faU\n8lilb6hXWV5apqdz+dfpGso/ah2tH6zW+27lo76T95TabEtmMnf6wMhm3eJWKtydVRmvXJo8\n5Go/GXSrTLtrffv7HdZJtvIpm0I/r1BmpdDXnZr/pPL+opcO3jEwufkeva8qTGTv6hud6P1G\nV+dO9luSVbqqsXOsHv8tms/0D2/+wFjm7qqfBKj98NHRiZf965LOtrSKuqsKvEKDG+3J+SeI\nXaNvxT+s6R9qeyt0ZWU3lb/D2sAKHNVJr/m3+TYJ7Na23Lv7h7d8Ysy7Z4c+bGM8uy1V8Fr+\nhEorLy/vpXJqIORlVAl9eWYdaP8JNcv3cpncet3G9ROrTHEYn7zjKeX1r0s7lj2nir9Aeeyi\naie3W+Sfdndl1vM/NJDedIHn3TFjIDXu3a3y3PGFJR0HtSc8/2XafnfMUPt0ft+2AeWVqfTT\nx4xNXn5LcTni75XXL9v9Ay9KJu2BIf7ulp+W6yV4UrepblJ9NgyMbq7hbUd3DmubX+loP3hY\nfzxIgz2/x5redgfti+PatvZl/0HN69V0h0qiuvg3y/azk+nh9yQ7Oqxudoyt0Fr5nUbvLQzq\noP6PRDZ3dmpk8zd16NnxUzaMZ+/q1z77ja725OPasB0HuxSOA29Y0zf6Qe6zqfTEOi3/lfJd\npu2/UPOXqDzj2rfvUnH/qX/YXz82semBshuZ4wIdT7/pSu7/XS+ZtC9mw3OBtq7Bter9fTXO\nuzQ42qJlmiTMJjCeuWNA7fx/l7YnH9FxslKIuyh9uF95v5bgZ/Ul1XvHs9/vmy0fliFQYwEb\nU3xS8duKOrcQEJi/wFHKwk4KOpk3fdD5UH9dvRCsI1DFVcx8+ninoemR3Ct4XFthnejV3k05\nF2UXT1O0KP+27HJrqyraq1SeNm9aeWJtb9sru81ymVUxf6HznNqe7ePhsXy2BptT86so845M\nMq2c1s7zOOaivKLXudTrzeEDSaLXueQxtc48992pfBwmypW7kkm0fNrx4rDd4qRRfsXzo/eV\nlkfpav4a+wyoed4tmOEOa8cWtKbKZQTsvGd9WevTEhCoiUArDZBqAkYmCCCAAAIIIIAAAotG\noKkGSPP4NnjRNAgFQQABBBBAAAEEEEAAAQRqIsAAqSaMZIIAAggggAACCCCAAALNIMAAqRla\nkToggAACCCCAAAIIIIBATQQYINWEkUwQQAABBBBAAAEEEECgGQQYIDVDK1IHBBBAAAEEEEAA\nAQQQqIkAA6SaMJIJAggggAACCCCAAAIINIMAA6RmaEXqgAACCCCAAAIIIIAAAjURYIBUE0Yy\nQQABBBBAAAEEEEAAgWYQYIDUDK1IHRBAAAEEEEAAAQQQQKAmAgyQasJIJggggAACCCCAAAII\nINAMAgyQmqEVqQMCCCCAAAIIIIAAAgjURIABUk0YyQQBBBBAAAEEEEAAAQSaQaCtGSrRRHXo\naKK6LERV2hdiI2wDAQQQQAABBBBYhAKBypRZJOVqqj4sA6TFsVdNhsUYWhzFoRQIIIAAAggg\ngAACCDgLTDivsQhX8BdhmVq1SK9UxbkiUn3rv1dJX6X45epXIWUNBeybon9RPF/x0RrmS1bV\nC6xV0mWK/6/6VUhZQ4Fe5XWB4kcVUzXMl6yqFzhbSZ9XvLj6VUhZQ4G9lNfHFN+vuFiuYqgo\nLRXOUW1vUlws5wEbHN3aUi1AZRFYZAKfUXmuXWRlaqXidKuydmnfBvaEHSPwdW32+ztm02xV\nAnsp2jHwYkXCjhHYqs3aFzWEHSNwhDZrx0DXjtk8W5XAdYqfRqL2Ajykofam5IgAAggggAAC\nCCCAAAINKsAAqUEbjmIjgAACCCCAAAIIIIBA7QUYINXelBwRQAABBBBAAAEEEECgQQUYIDVo\nw1FsBBBAAAEEEEAAAQQQqL0AA6Tam5IjAggggAACCCCAAAIINKgAA6QGbTiKjQACCCCAAAII\nIIAAArUXYIBUe1NyRAABBBBAAAEEEEAAgQYVYIDUoA1HsRFAAAEEEEAAAQQQQKD2AgyQam9K\njggggAACCCCAAAIIINCgAgyQGrThKLY3KYMJHHaYQFZbzilaOxB2jADHwI5xj7Ya7ft8DkUi\nC/9q9vgvvHu0RbO384CdDwg7RoDzwI5xZ6sILFqBbpVst0VbutYo2N6tUc1FW8sVKtnOi7Z0\nrVGwfVqjmou2lrb/L1+0pWuNgnEe2LHt/EJt3vpDBAQQQAABBBBAAAEEEEAAAQQQQAABBBBA\nAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQ\nQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE\nEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAAB\nBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAA\nAQQQQKBRBZKNWnDK3bQCu6tmb1T8o+JomVruofnHKtqrpZtULBdc0pbLoxXmt6uShyoeo9il\n+IxioFgq2OfGUYpHKGYUU4rlgkvacnm0wvwlquRhikcr9ig+p5hVLBVcTTkGSikW5r1VL+b5\nbJkkLtYuaW1ztIvn7SWHExW3KZYLL9EC+7zZP0zQVy6h5ruYurbXLJtt6EWVjoF45Sqdn11N\nXdorXo5mmt5Llal0DLicn11MXdI2kzl1QaDhBOzD9UZF65jbCbFU+F+aaQMiS2Mxo3iuYqng\nkrbU+q0y789V0X7FyNRef6O4r2JxsHm/V4ynvUvv9yxOqPcuaUus3jKzXq+aPqIYN31Y721+\ncXA15RgoFtz+/ixNmvk522dNm3KxdklrG6FdPG8nOdytOGQgJcJumne5Yvy4sOlfKNqgqTi4\nmLq2V/G2muV9pWMgXs9K52dXU5f2ipejmaYrHQNWV5fzs4upS9pmMqcuCDSkwKdU6uhkWGqA\ndHy4/FK9vkLRrmBcHc77a73Gg0va+HqtNv0WVTinaN/gnqJort9QtIGnzWtXjIKviRsUn1fc\noLiP4lmKI4qPKnYrRsElbbROK76+SJUeULQBqg30D1D8iKJ9Sz6ouJdiFFxNOQYiuZmvJ2vW\nhGK5AZKLtUtaKwnt4nkr5RB9dpcaICW0/DpFa59LFN+seKzitxXt8+pORbvqGgUXU9f2irbR\nbK+VjoHi+s52fnY1dWmv4nI0y/tKx4DV0+X87GLqkrZZvKkHAg0rYIMduzJkt8zZSbF4gLRU\n8x5WfELRvsmKQocmbP7jitF8l7RRPq36eosqbgOefYsArFNi7XBcbP5fhfPeG5tnk2eVmO+S\ntii7lnr7d6HdeUW1/kw4/xOx+S6mHAMxuNjkKk1vUrR9eyx8PUevxcHF2iUt7VL4IuZJgVsb\njCuWGiAdGy63OwqKw1WaYeuuCRe4mrq0V/G2m+F9tcdAvK6Vzs8upq7tFS9Hs0yfoopUOgas\nrtWen11MXdI2izf1QKBhBezKw/2Kv1T8kqKd/F6lGA9v1hubf0F8Zjh9frjsxPC9S9oS2bXM\nrKgT8tESNbZb5t6g+ILYsl9r2jqVK2LzbNJuE7Dfi9mHeRRc0kbrtOKr7c+2X59UVPnXh/O/\nHpvvYsoxEIOLTZqheX9f8Z3hdKkBkou1S9pWb5eo/vYbO9vnf6tYaoB0huY/rPgexeLwDs2w\nNvx0uCDKs5pzg63i0l7hJprqxepvfpWOgajS1ZyfXUxd2ysqR7O8RvWvdAwcqwpbO1Vzfo7y\nrOYYcEnbLOZzqoddxiYgsKMFvqoC7KpoHZZyP0y3b7As3Fx4mfZ/NO+V4VyXtNMyarE3h4X1\n/Un4ulyv9pCGXRTtitzPFf+oaKFd8VDF+xTtlrB4sCtQ9ygeomjpXNIqeUuHn4a1P7NI4Yzw\nfbTc1ZRjoAg0fHurXo9XfLti8X4cJnHaf2mXSK26V7t193OKL1W8YpZVvqtlf6L4rRJpXhLO\nezB8ddnXXdurxOYbflY1x0C8kpXOz66mLu0VL0ezTFd7DLicn11MXdI2i/mc6tE2p7VYCYHa\nCZysrM5SfLfiw7NkawMoC/bbjOKQCmesDl9d0hbn1Urv9wgr26/XKxVPUIy+NLlU02crRt52\nv3RH7L0mpwVrAztR2uDKTgDVpn1SaVs5XKfKn6f4cUX7XcUPFd+kaIPRryhepWjBxd9MOQby\nbDP+e/+MOTNnuFi77uut3i424I8G/TPlK8/ZWUk+rGhfyvwsTO5i6tK2zfrZVM0xENJ61Zyf\nXU1d2isqRzO9VnsMuJyfXUxd0jaTu3NdGCA5k7FCDQV2U17fUvyB4ncq5LtTuNwuSxcH65xb\nsFsBLLikLazRmv+vDqv9n3pNKp6tmFZcq3iqorXPqxXtMv9splo89ahvawNLb6FUW9n84vay\nea0a7Irp9xRPUTxI8QBFC/bt+DcVJ+2Ngot/pfT450nL/udi7bqvz5Y37VK2SfIL7LPFvkCw\nQZLdeve0ogUX09nSWl60gSkUQrXnZ1fT2dLjH+l7Xq3Oz8Wm+G83nnUq+rZ41kQsRKBOAjYo\nyinaFaRKYSxMUGqftc69BetsWnBJW1ijNf+PPiiXqPpHKn5b8RLFtyr+UvFoxbcrWpjN1JbH\n28Alra3bysF8tykOK9qtDz3hq3X+fqc4F3+tNmt7xdvK0hKmC7jsvy5pbSuzpaddprdD/J0N\niuybd/uc+mdF+6yKgovpbGktP9ogUi18aVnN+dnVdLb0+G/3r9X5udgU/+3Gs06V6mzOugIL\nEaiRwAeUj/1Y8EOK1jlcGka7TcuCddptnj0+1EJ0u0Nv4e20/6N5g+Fcl7TTMmqxN0+F9f26\nXqMPzYjg4nAiepqgddjt2/LIOkoXvUbzrQ1c0kbrt+rrh1XxEcUTFW9RtGPBXu29WX5c0YKr\nKcdAwW0u/7tYu6S1stAu7i2yt1a5SdE+i85X/BvFeHAxdW2v+HZaafoDqmy152dXU5f2aiXz\n4rq6nJ9dTF3SFpeppd5zi11LNfeiquzbwtJcXKZU14bz99PrvYrVHNR/CNdxSRuu0pIvT4S1\nfqZE7aP7+3cJl2X0+kfFaCBUvIrNt46+/fDdruRVm1ZJWzaYrV01ukIxVaRggyP7xvydii9S\nfEzRxZRjQGBzDPXc12kXt0Y5UMntITJ2rJyt+G+KxcHF1KVti7fTSu9dz898NtV+73A5P7sc\nAy5pa1+rBsqRK0gN1FhNVtTLVJ+vlYi/Deu5NVxmDxCw8PvCS/6PBYaTUy/HhlM3h68uaacy\nacGJyOlPS9T9heE8u5oRBUu/v6Ld7hIP1nl5ueKtitFtji5p43m10rRZ2WfwC8pUuiOcH90i\n4WIatW10bMQ3Ec2Ljpf4MqYLAq7WLseFbSFqg7h3NI92Kai8Ui/XK9ptp3ZFtdTgSLOdzg1R\n+mrby9K3YpjL+blaUz6bqtujIqdqzs9R2ugzJL6FaF70ueKSNp4P0wggsIMFLtD2A8VXlSjH\nHZpnl52je3MtyXJFu8R/m2L8iqhLWq3aksE64HZlwq68rS4SsAGqtcNhsfmnhvPOjc2zyY+G\n80+LzXdJG1ut5SbvUo0nFK0zGA/WHnY1LvoW0Za5mnIMmFr5cJIW2T5+TokkLtYuaW1TtMt2\ncPtCbGj726mpLk09rGi3/ka3+U4tLDHhYuraXiU21zSzZjsGSlWy3PnZ1dSlvUqVo5nmlTsG\nXM/PLqYuaZvJmrog0NAC5T6ArVJrFa1DY1cqrDO+RtE+XOy2iT9VjAeXtPH1Wm36DFXYfoh7\nt+L7FN+kuFnRnL+kGA92tcPS2ZWPzyq+UfFz4ftL9RoPLmnj67Xa9GtUYfNMKf694usU36P4\nqKK1wQmKUXA15RiI5Eq/nqTZZlxqgORi7ZLWSkK7mEIh2Od3qQHSeZpvbWNf3lxeJtpxEgUX\nU9f2irbRjK+zHQOl6lvu/Oxq6tJepcrRTPPKHQNWxzMUqz0/u5i6pG0ma+qCQEMLlPsAjiq1\nXhMpRTt5WrTpdyuWCi5pS63fKvOsEx51yM30ScUvKvqKxWFnzfixon1oR21wjaZ3UywOLmmL\n122l9zZI2qYYedrrvYrHKxYHV1OOgWLB7e8rdQ5drF3SWglol0I7lOsc2h0B8eOh1PQ/FbKY\n+t/F1LW9pjbSZBOVjoHi6s52fnY1dWmv4nI00/tyx0BUR5fzs4upS9qoLLwigMAiF7CO+z6K\nByh2ViirS9oKWTX9Yhvk7FdlLZcp3WGKpQZGxVm4pC1et5Xer1JlzdR+01UpuJhyDFTSnH25\ni7VLWtpldve5LHU1dWmvuZSnFddxMXVtr1b0jOpc7fnZxdQlbVQOXhFAAAEEEEAAAQQQQAAB\nBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAA\nAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBA\nAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQ\nQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE\nEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAAB\nBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAA\nAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBA\nAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQ\nQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE\nEEAAAQQQQAABBBBAAAEEEEAAAQSaRCDZJPWgGggggAACCJjASsU3K9r57VlFAgIIIIAAAggg\ngAACCCDQsgKvUs0DxS+0rAAVRwABBBCYl0BiXmuzMgIIIIAAAggggAACCCDQRAIMkJqoMakK\nAggggAACCCCAAAIIzE+gbX6rszYCCCCAAAILJmDnrBMVD1XsVPyd4pWKo4rVhH2V6PWKL1N8\nRPE6xTsUo3CcJl6s+APFAcV4WKo3axQfV/xFfAHTCCCAAAIIIIAAAggggMBCC7xEG/y1ov2+\naFDxuXD6br0erBiFcr9BOkcJxhVzijbIyShmFc9X9BUtvF/R8v+AvSkK6/Xelv1N0XzeIoAA\nAggggAACCCCAAAILKmADmFsUbUCzQTEa0Byv6T7FexU7FC2UGiC9RfNtcHO94u6KFpYpblG0\n+WcoWlihaFejbrI3ReEavZ9Q3LloPm8RQAABBBBAAAEEEEAAgQUVeIe2ZgMZu52uOJynGbbs\nveGCUgOke8I0h4VpopduTYwoPqkYDbou0rTlt49iFF6oCbvi9J/RDF4RQAABBJpXgIc0NG/b\nUjMEEECgWQRs0GPBfvtjt9PFo91iZ+GVhZcZ/9tVoZcp3q84qRhfd2+9tytTNgCKriz9u6Yt\n2C11UVinCfu7StGyaD6vCCCAAAIIIIAAAggggMCCC1ylLdpVndnitWGpiq8gHV5hvSjPY8P1\n7YvDxxTvC9/biz0M4ilFHmxkGgQEEECgyQX4sG/yBqZ6CCCAQBMIjIV1sKs6z5Spz/Nl5kfr\n2m+IvlQmjc2+M1xmD3H4ruInFI9QtN8kHaL4fxTtNjsCAggggECTCzBAavIGpnoIIIBAEwhE\nV3NsEPTzovrYLXR2e93TRfOjtw9owq4S2cMVite1NEcq2sMfhuxNGC7U68cV7bHedluehX8v\nvPA/AggggAACCCCAAAIIILBjBY7S5u3Kzo2K9lugeNikNzYAens4s/gWO5t9taKlOcHexMIB\nmh5XvF2xPTbfJq9TtMHV/Yr2eHECAggggAACCCCAAAIIILBoBL6jktgg578U/0LxFEW7Fc7m\n2R92jUKpAZI9pMFulbP4aUV7PPi5ijYAstvmSj3g4QzNt7wtvk+RgAACCCCAAAIIIIAAAggs\nGgF7eMJHFAcUo4GLXVX6D8XdFKNQaoBky/ZTvEHRbqeL1n9C02colgr2CHC7pc8GVXYbHwEB\nBBBAAAEEEEAAAQQQWJQCL1Kp7MEJO82hdEu1zqGKL1Ysvl1vDtmxCgIIIIAAAggggAACCCCA\nAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg\ngAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAII\nIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAC\nCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAA\nAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCA\nAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg\ngAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAII\nIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAC\nCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCw2AX+PzJR\nfDkHgY6PAAAAAElFTkSuQmCC", "text/plain": [ "Plot with title “Hemlock cover vs. elevation”" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "with(dat2,plot(elev,cover,main=\"Hemlock cover vs. elevation\", \n", " cex = 1.5, col = 'midnightblue', pch = 19))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Note the chi-squared test is typically recommended for models with 'known deviance' (Poisson and binomial). Here the model with elevation adds no explanatory power (fairly obvious from the graph), but we can still add the predicted trend line to our graph:\n", "\n" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "\n", "Call:\n", "glm(formula = cover ~ disturb, family = poisson, data = dat2)\n", "\n", "Deviance Residuals: \n", " Min 1Q Median 3Q Max \n", "-2.1794 -0.7763 -0.1980 0.8523 2.2006 \n", "\n", "Coefficients:\n", " Estimate Std. Error z value Pr(>|z|) \n", "(Intercept) 1.48367 0.03838 38.661 <2e-16 ***\n", "disturbLT-SEL 0.03204 0.04685 0.684 0.494 \n", "disturbSETTLE 0.08957 0.05485 1.633 0.103 \n", "disturbVIRGIN 0.12184 0.05277 2.309 0.021 * \n", "---\n", "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1\n", "\n", "(Dispersion parameter for poisson family taken to be 1)\n", "\n", " Null deviance: 749.25 on 745 degrees of freedom\n", "Residual deviance: 742.32 on 742 degrees of freedom\n", "AIC: 3211.3\n", "\n", "Number of Fisher Scoring iterations: 4\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "\n", "\n", "\t\n", "\t\n", "\n", "
Resid. DfResid. DevDfDeviancePr(>Chi)
745 749.2497 NA NA NA
742 742.3237 3 6.926019 0.07429355
\n" ], "text/latex": [ "\\begin{tabular}{r|lllll}\n", " Resid. Df & Resid. Dev & Df & Deviance & Pr(>Chi)\\\\\n", "\\hline\n", "\t 745 & 749.2497 & NA & NA & NA\\\\\n", "\t 742 & 742.3237 & 3 & 6.926019 & 0.07429355\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "Resid. Df | Resid. Dev | Df | Deviance | Pr(>Chi) | \n", "|---|---|\n", "| 745 | 749.2497 | NA | NA | NA | \n", "| 742 | 742.3237 | 3 | 6.926019 | 0.07429355 | \n", "\n", "\n" ], "text/plain": [ " Resid. Df Resid. Dev Df Deviance Pr(>Chi) \n", "1 745 749.2497 NA NA NA\n", "2 742 742.3237 3 6.926019 0.07429355" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "x = seq(0,1660)\n", "#plot.new()\n", "#lines(predict(glm2,list(elev=x),type=\"response\"),lwd=2,col=\"orange\")\n", "\n", "#What is crucial here is the type argument to predict: \"response\" re-calculates the coefficients to be on the same scale as the original response variable, rather than the scale of the link function. Let's now try an ANOVA with Poisson error, using disturbance as our predictor:\n", "\n", "glm3 = glm(cover~disturb, data = dat2, family = poisson)\n", "\n", "summary(glm3)\n", "anova(glm1, glm3, test = \"Chisq\") \n" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "\n", "Call:\n", "glm(formula = cover ~ elev, family = poisson, data = dat2)\n", "\n", "Deviance Residuals: \n", " Min 1Q Median 3Q Max \n", "-2.0673 -0.8250 -0.3048 0.9991 2.1347 \n", "\n", "Coefficients:\n", " Estimate Std. Error z value Pr(>|z|) \n", "(Intercept) 1.546e+00 5.135e-02 30.115 <2e-16 ***\n", "elev -8.448e-06 5.471e-05 -0.154 0.877 \n", "---\n", "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1\n", "\n", "(Dispersion parameter for poisson family taken to be 1)\n", "\n", " Null deviance: 749.25 on 745 degrees of freedom\n", "Residual deviance: 749.23 on 744 degrees of freedom\n", "AIC: 3214.2\n", "\n", "Number of Fisher Scoring iterations: 4\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "\n", "\n", "\t\n", "\t\n", "\n", "
Resid. DfResid. DevDfDeviancePr(>Chi)
745 749.2497 NA NA NA
744 749.2259 1 0.023848930.8772699
\n" ], "text/latex": [ "\\begin{tabular}{r|lllll}\n", " Resid. Df & Resid. Dev & Df & Deviance & Pr(>Chi)\\\\\n", "\\hline\n", "\t 745 & 749.2497 & NA & NA & NA \\\\\n", "\t 744 & 749.2259 & 1 & 0.02384893 & 0.8772699 \\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "Resid. Df | Resid. Dev | Df | Deviance | Pr(>Chi) | \n", "|---|---|\n", "| 745 | 749.2497 | NA | NA | NA | \n", "| 744 | 749.2259 | 1 | 0.02384893 | 0.8772699 | \n", "\n", "\n" ], "text/plain": [ " Resid. Df Resid. Dev Df Deviance Pr(>Chi) \n", "1 745 749.2497 NA NA NA\n", "2 744 749.2259 1 0.02384893 0.8772699" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "glm2 = glm(cover~elev, data = dat2, family = poisson)\n", "summary(glm2)\n", "anova(glm1,glm2,test=\"Chisq\") " ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "\n", "Call:\n", "glm(formula = cover ~ disturb * elev, family = poisson, data = dat2)\n", "\n", "Deviance Residuals: \n", " Min 1Q Median 3Q Max \n", "-2.4042 -0.7782 -0.2072 0.8090 2.0888 \n", "\n", "Coefficients:\n", " Estimate Std. Error z value Pr(>|z|) \n", "(Intercept) 1.445e+00 1.396e-01 10.352 <2e-16 ***\n", "disturbLT-SEL 2.546e-01 1.639e-01 1.554 0.1203 \n", "disturbSETTLE -3.702e-01 2.275e-01 -1.628 0.1036 \n", "disturbVIRGIN 9.283e-02 2.625e-01 0.354 0.7236 \n", "elev 3.540e-05 1.243e-04 0.285 0.7758 \n", "disturbLT-SEL:elev -2.788e-04 1.651e-04 -1.689 0.0912 . \n", "disturbSETTLE:elev 7.319e-04 2.943e-04 2.487 0.0129 * \n", "disturbVIRGIN:elev 2.278e-05 2.269e-04 0.100 0.9200 \n", "---\n", "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1\n", "\n", "(Dispersion parameter for poisson family taken to be 1)\n", "\n", " Null deviance: 749.25 on 745 degrees of freedom\n", "Residual deviance: 729.06 on 738 degrees of freedom\n", "AIC: 3206\n", "\n", "Number of Fisher Scoring iterations: 4\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "glm4 = glm(cover~disturb*elev,data=dat2,family=poisson)\n", "\n", "summary(glm4) " ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Start: AIC=3206\n", "cover ~ disturb * elev\n", "\n", " Df Deviance AIC\n", " 729.06 3206\n", "- disturb:elev 3 742.06 3213\n" ] }, { "data": { "text/plain": [ "\n", "Call: glm(formula = cover ~ disturb * elev, family = poisson, data = dat2)\n", "\n", "Coefficients:\n", " (Intercept) disturbLT-SEL disturbSETTLE disturbVIRGIN \n", " 1.445e+00 2.546e-01 -3.702e-01 9.283e-02 \n", " elev disturbLT-SEL:elev disturbSETTLE:elev disturbVIRGIN:elev \n", " 3.540e-05 -2.788e-04 7.319e-04 2.278e-05 \n", "\n", "Degrees of Freedom: 745 Total (i.e. Null); 738 Residual\n", "Null Deviance:\t 749.2 \n", "Residual Deviance: 729.1 \tAIC: 3206" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "step(glm4) " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The ANOVA contrasts suggest a significant difference in slope with elevation in the plots of prior settlement:\n", "disturbSETTLE:elev 0.0129 *; \n", "the step function shows that the interaction is necessary (large increase in AIC when the interaction is removed)." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#?step\n", "\n" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#st=step(glm4) " ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#st$anova" ] } ], "metadata": { "kernelspec": { "display_name": "R", "language": "R", "name": "ir" }, "language_info": { "codemirror_mode": "r", "file_extension": ".r", "mimetype": "text/x-r-source", "name": "R", "pygments_lexer": "r", "version": "3.3.2" } }, "nbformat": 4, "nbformat_minor": 1 }